基于CNN+LSTM深度学习网络的时间序列预测matlab仿真,并对比CNN+GRU网络

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

[4.1 CNN基础](#4.1 CNN基础)

[4.2 LSTM原理](#4.2 LSTM原理)

[4.3 GRU原理](#4.3 GRU原理)

[4.4 CNN+LSTM与CNN+GRU对比](#4.4 CNN+LSTM与CNN+GRU对比)

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

MATLAB2022A

3.部分核心程序

复制代码
.....................................................................

IT  =[1:length(INFO.TrainingLoss)];
LOSS=INFO.TrainingLoss;
Accuracy=INFO.TrainingRMSE;

figure;
plot(IT(1:1:end),LOSS(1:1:end));
xlabel('epoch');
ylabel('LOSS');


figure;
plot(IT(1:1:end),Accuracy(1:1:end));
xlabel('epoch');
ylabel('RMSE');


%数据预测
Dpre1 = predict(Net, Nsp_train2);
Dpre2 = predict(Net, Nsp_test2);

%归一化还原
T_sim1=Dpre1*Vmax2;
T_sim2=Dpre2*Vmax2;
 

figure
subplot(211);
plot(1: Num1, Tat_train,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.99,0.4,0.0]);
hold on
plot(1: Num1, T_sim1,'g',...
    'LineWidth',2,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);

legend('训练样本真实值', '训练样本预测值')
xlabel('预测样本')
ylabel('预测结果')
grid on

subplot(212);
plot(1: Num1, Tat_train-T_sim1','-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
 
xlabel('训练样本预测样本')
ylabel('训练样本预测误差')
grid on
ylim([-50,50]);

ERR1=mean(abs(Tat_train-T_sim1'));
title(['误差均值:',num2str(ERR1)]);
figure
subplot(211);
plot(1: Num2, Tat_test,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.99,0.4,0.0]);
hold on
plot(1: Num2, T_sim2,'g',...
    'LineWidth',2,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
legend('测试样本真实值', '测试样本预测值')
xlabel('测试样本')
ylabel('测试结果')
grid on

subplot(212);
plot(1: Num2, Tat_test-T_sim2','-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
 
xlabel('测试样本预测样本')
ylabel('测试样本预测误差')
grid on
ylim([-50,50]);


ERR2=mean(abs(Tat_test-T_sim2'));
title(['误差均值:',num2str(ERR2)]);

save R1.mat
139

4.算法理论概述

时间序列预测是数据分析中的一个重要分支,它涉及到对未来事件的预测,基于历史数据中的模式和趋势。在深度学习领域,卷积神经网络(CNN)和循环神经网络(RNN)的组合,特别是结合长短时记忆单元(LSTM)或门控循环单元(GRU),已成为处理时间序列数据的强大工具。

4.1 CNN基础

卷积神经网络(CNN)最初设计用于图像识别,但其强大的特征提取能力同样适用于时间序列数据。CNN通过卷积层捕获局部特征,池化层降低数据维度,从而提取时间序列中的模式。对于一维时间序列数据,卷积操作定义为:

4.2 LSTM原理

长短时记忆网络(LSTM)是RNN的一种特殊类型,特别擅长处理长序列数据,通过其独特的门机制(输入门、遗忘门、输出门和细胞状态)来控制信息的流动,从而解决了传统RNN中长期依赖问题。LSTM单元的更新可以表示为:

4.3 GRU原理

门控循环单元(GRU)是LSTM的一个简化版本,它合并了输入门和遗忘门为单一的更新门,同时合并了细胞状态和隐藏状态,减少了模型的复杂性,但仍然能够有效处理长序列数据。GRU的更新公式为:

4.4 CNN+LSTM与CNN+GRU对比

共同点

  • 两者的结合都是先通过CNN提取时间序列的局部特征,然后利用RNN(LSTM或GRU)处理序列特征,捕捉长时依赖。
  • 在时间序列预测中,CNN通常用于降维和特征提取,RNN则用于序列建模。

差异

  • 复杂性与计算效率:GRU结构相对简单,参数较少,计算速度较快,适合资源有限的场景。LSTM虽然复杂,但理论上能更好地处理长期依赖问题。
  • 记忆机制:LSTM通过独立的输入门、遗忘门和输出门精细控制信息流动,而GRU通过更新门和重置门合并了这些功能,牺牲了一定的控制精细度,换取了模型的简洁。
  • 应用场景:对于需要细致控制信息遗忘和存储的复杂序列预测任务,LSTM可能更优;而对于追求效率和较简单序列模式识别,GRU可能是更好的选择。

5.算法完整程序工程

OOOOO

OOO

O

相关推荐
有Li3 小时前
通过具有一致性嵌入的大语言模型实现端到端乳腺癌放射治疗计划制定|文献速递-最新论文分享
论文阅读·深度学习·分类·医学生
张较瘦_6 小时前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习
cver1236 小时前
野生动物检测数据集介绍-5,138张图片 野生动物保护监测 智能狩猎相机系统 生态研究与调查
人工智能·pytorch·深度学习·目标检测·计算机视觉·目标跟踪
学技术的大胜嗷6 小时前
离线迁移 Conda 环境到 Windows 服务器:用 conda-pack 摆脱硬路径限制
人工智能·深度学习·yolo·目标检测·机器学习
Akttt9 小时前
【T2I】R&B: REGION AND BOUNDARY AWARE ZERO-SHOT GROUNDED TEXT-TO-IMAGE GENERATION
人工智能·深度学习·计算机视觉·text2img
点我头像干啥11 小时前
用 PyTorch 构建液态神经网络(LNN):下一代动态深度学习模型
pytorch·深度学习·神经网络
小白狮ww11 小时前
VASP 教程:VASP 机器学习力场微调
人工智能·深度学习·机器学习
呆头鹅AI工作室12 小时前
[2025CVPR]SEEN-DA:基于语义熵引导的领域感知注意力机制
人工智能·深度学习·机器学习
西柚小萌新13 小时前
【深度学习:进阶篇】--4.3.seq2seq与Attention机制
人工智能·深度学习
求索小沈13 小时前
ubuntu22.04 安装cuda cudnn
人工智能·深度学习