基于CNN+LSTM深度学习网络的时间序列预测matlab仿真,并对比CNN+GRU网络

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

[4.1 CNN基础](#4.1 CNN基础)

[4.2 LSTM原理](#4.2 LSTM原理)

[4.3 GRU原理](#4.3 GRU原理)

[4.4 CNN+LSTM与CNN+GRU对比](#4.4 CNN+LSTM与CNN+GRU对比)

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

MATLAB2022A

3.部分核心程序

复制代码
.....................................................................

IT  =[1:length(INFO.TrainingLoss)];
LOSS=INFO.TrainingLoss;
Accuracy=INFO.TrainingRMSE;

figure;
plot(IT(1:1:end),LOSS(1:1:end));
xlabel('epoch');
ylabel('LOSS');


figure;
plot(IT(1:1:end),Accuracy(1:1:end));
xlabel('epoch');
ylabel('RMSE');


%数据预测
Dpre1 = predict(Net, Nsp_train2);
Dpre2 = predict(Net, Nsp_test2);

%归一化还原
T_sim1=Dpre1*Vmax2;
T_sim2=Dpre2*Vmax2;
 

figure
subplot(211);
plot(1: Num1, Tat_train,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.99,0.4,0.0]);
hold on
plot(1: Num1, T_sim1,'g',...
    'LineWidth',2,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);

legend('训练样本真实值', '训练样本预测值')
xlabel('预测样本')
ylabel('预测结果')
grid on

subplot(212);
plot(1: Num1, Tat_train-T_sim1','-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
 
xlabel('训练样本预测样本')
ylabel('训练样本预测误差')
grid on
ylim([-50,50]);

ERR1=mean(abs(Tat_train-T_sim1'));
title(['误差均值:',num2str(ERR1)]);
figure
subplot(211);
plot(1: Num2, Tat_test,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.99,0.4,0.0]);
hold on
plot(1: Num2, T_sim2,'g',...
    'LineWidth',2,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
legend('测试样本真实值', '测试样本预测值')
xlabel('测试样本')
ylabel('测试结果')
grid on

subplot(212);
plot(1: Num2, Tat_test-T_sim2','-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
 
xlabel('测试样本预测样本')
ylabel('测试样本预测误差')
grid on
ylim([-50,50]);


ERR2=mean(abs(Tat_test-T_sim2'));
title(['误差均值:',num2str(ERR2)]);

save R1.mat
139

4.算法理论概述

时间序列预测是数据分析中的一个重要分支,它涉及到对未来事件的预测,基于历史数据中的模式和趋势。在深度学习领域,卷积神经网络(CNN)和循环神经网络(RNN)的组合,特别是结合长短时记忆单元(LSTM)或门控循环单元(GRU),已成为处理时间序列数据的强大工具。

4.1 CNN基础

卷积神经网络(CNN)最初设计用于图像识别,但其强大的特征提取能力同样适用于时间序列数据。CNN通过卷积层捕获局部特征,池化层降低数据维度,从而提取时间序列中的模式。对于一维时间序列数据,卷积操作定义为:

4.2 LSTM原理

长短时记忆网络(LSTM)是RNN的一种特殊类型,特别擅长处理长序列数据,通过其独特的门机制(输入门、遗忘门、输出门和细胞状态)来控制信息的流动,从而解决了传统RNN中长期依赖问题。LSTM单元的更新可以表示为:

4.3 GRU原理

门控循环单元(GRU)是LSTM的一个简化版本,它合并了输入门和遗忘门为单一的更新门,同时合并了细胞状态和隐藏状态,减少了模型的复杂性,但仍然能够有效处理长序列数据。GRU的更新公式为:

4.4 CNN+LSTM与CNN+GRU对比

共同点

  • 两者的结合都是先通过CNN提取时间序列的局部特征,然后利用RNN(LSTM或GRU)处理序列特征,捕捉长时依赖。
  • 在时间序列预测中,CNN通常用于降维和特征提取,RNN则用于序列建模。

差异

  • 复杂性与计算效率:GRU结构相对简单,参数较少,计算速度较快,适合资源有限的场景。LSTM虽然复杂,但理论上能更好地处理长期依赖问题。
  • 记忆机制:LSTM通过独立的输入门、遗忘门和输出门精细控制信息流动,而GRU通过更新门和重置门合并了这些功能,牺牲了一定的控制精细度,换取了模型的简洁。
  • 应用场景:对于需要细致控制信息遗忘和存储的复杂序列预测任务,LSTM可能更优;而对于追求效率和较简单序列模式识别,GRU可能是更好的选择。

5.算法完整程序工程

OOOOO

OOO

O

相关推荐
我要学脑机4 分钟前
基于常微分方程的神经网络(Neural ODE)
人工智能·深度学习·神经网络
烟锁池塘柳01 小时前
【计算机视觉】Bayer Pattern与Demosaic算法详解:从传感器原始数据到彩色图像
人工智能·深度学习·计算机视觉
硅谷秋水1 小时前
MANIPTRANS:通过残差学习实现高效的灵巧双手操作迁移
人工智能·深度学习·机器学习·计算机视觉
weixin_435208162 小时前
如何评价 DeepSeek 的 DeepSeek-V3 模型?
人工智能·深度学习·自然语言处理
Fanxt_Ja3 小时前
LLaMA-Factory部署以及大模型的训练(细节+新手向)
人工智能·深度学习·语言模型·自然语言处理·conda·llama-factory·deepseek
每天都要写算法(努力版)5 小时前
【神经网络与深度学习】两种加载 pickle 文件方式(joblib、pickle)的差异
人工智能·深度学习·神经网络
Francek Chen5 小时前
【现代深度学习技术】循环神经网络07:通过时间反向传播
人工智能·pytorch·rnn·深度学习·神经网络·bptt
寻丶幽风6 小时前
论文阅读笔记——ZeroGrasp: Zero-Shot Shape Reconstruction Enabled Robotic Grasping
论文阅读·笔记·深度学习·机器人·机械臂·具身智能
鸿蒙布道师7 小时前
百度Create大会深度解读:AI Agent与多模态模型如何重塑未来?
人工智能·深度学习·神经网络·机器学习·百度·自然语言处理·dubbo
kyle~8 小时前
深度学习---Pytorch概览
人工智能·pytorch·python·深度学习