大模型分布式训练并行技术分享

目前业内解决大模型问题,基本以多节点、分布式方案为主。分布式方案具体的实施时,又分为数据并行、参数并行、流水线并行等,针对具体的业务场景采取合适的并行方案方可带来更高的效率。

后续结合业内主流的分布式框架,具体介绍各种并行的思路以及可能带来的收益。

数据并行

一些基础知识的补充:
Pytorch DDP分布式细节分享

ZeRO(零冗余优化)

零冗余优化的核心思想:用通信换显存 ,数据算完即废,等需要的时候,再同步过来。

从效果来说,零冗余优化属于数据并行+张量并行,从根本来说属于数据并行。

模型在训练时需要的显存大小,假设模型的参数W大小是phi,以byte为单位,存储如下:

结论 :优化器、模型参数、梯度是占据显存的主要数据。

将优化器、模型参数、梯度等数据进行切分可达到不同程度的显存优化,可分为zero1、zero2、zero3

zero1(优化器切分)

由于每块GPU上只保管部分optimizer states,因此只能将相应的W(蓝色部分)进行更新;需要对W做一次All-Gather,从别的GPU上把更新好的部分W取回来,额外产生单卡通讯量phi。

zero2(优化器+梯度切分)
  • 对梯度做一次Reduce-Scatter,保证每个GPU上所维持的那块梯度是聚合梯度。单卡通讯量phi。
  • 每块GPU用自己对应的O和G去更新相应的W。更新完毕后,每块GPU维持了一块更新完毕的W。同理,对W做一次All-Gather,将别的GPU算好的W同步到自己这来。单卡通讯量phi。
zero3(优化器+梯度+参数切分)
  • 做forward时,对W做一次All-Gather,取回分布在别的GPU上的W,得到一份完整的W,单卡通讯量phi 。forward做完,立刻把不是自己维护的W抛弃。
  • 做backward时,对W做一次All-Gather,取回完整的W,单卡通讯量phi。backward做完,立刻把不是自己维护的W抛弃。
  • 做完backward,算得一份完整的梯度G,对G做一次Reduce-Scatter,从别的GPU上聚合自己维护的那部分梯度,单卡通讯量phi。聚合操作结束后,立刻把不是自己维护的G抛弃。

优化效果:

用1.5倍的通讯开销,换回近60倍的显存

基于zero的实现的工具有:

  • 微软Deepspeed
  • Pytorch fsdp(1.11+)

参考论文:

zero-deepspeed.pdf

模型并行

在数据并行训练中,一个明显的特点是每个 GPU 持有整个模型权重的副本,这就带来了冗余问题。如果将模型参数、优化器等分割在一个设备整列,将有效缓解显存的压力和副本冗余。

模型并行,主流上分为张量并行和流水线并行。

张量并行为层内并行,对模型 Transformer 层内进行分割、流水线为层间并行,对模型不同的 Transformer 层间进行分割。

张量并行(TP)

张量并行可视为层内并行,可分为按行进行切分和按列进行切分,分别对应行并行(Row Parallelism)与列并行(Column Parallelism)。

受 GSPMD、Oneflow 和 TF DTensor 的启发,PyTorch 从 2.0.0 开始引入 DTensor,通过DTensor抽象,我们可以无缝构建张量并行。

参考论文:
Megatron-LM 1D 2020-03-13

流水线并行(PP)

经典的流水线并行范式有Google推出的Gpipe,和微软推出的PipeDream。两者的推出时间都在2019年左右,大体设计框架一致。主要差别为:在梯度更新上,Gpipe是同步的,PipeDream是异步的。

多维混合并行

在进行上百亿/千亿级以上参数规模的超大模型预训练时,通常会组合多种并行技术一起使用。

常见的组合方式:

DP+PP

3D 并行(DP + PP + TP)

ZeRO-DP + PP + TP

相关推荐
AI糊涂是福10 分钟前
人工智能、机器学习与深度学习:概念解析与内在联系
人工智能·深度学习·机器学习
Douglassssssss1 小时前
【深度学习】残差网络(ResNet)
网络·人工智能·深度学习
卡尔曼的BD SLAMer1 小时前
计算机视觉与深度学习 | Python实现EMD-SSA-VMD-LSTM时间序列预测(完整源码和数据)
python·深度学习·算法·cnn·lstm
掘金-我是哪吒10 小时前
分布式微服务系统架构第132集:Python大模型,fastapi项目-Jeskson文档-微服务分布式系统架构
分布式·python·微服务·架构·系统架构
四口鲸鱼爱吃盐10 小时前
BMVC2023 | 多样化高层特征以提升对抗迁移性
人工智能·深度学习·cnn·vit·对抗攻击·迁移攻击
程序员学习随笔11 小时前
分布式 ID 生成的五种方法:优缺点与适用场景
分布式
Douglassssssss11 小时前
【深度学习】使用块的网络(VGG)
网络·人工智能·深度学习
hello1114-11 小时前
Redis学习打卡-Day3-分布式ID生成策略、分布式锁
redis·分布式·学习
終不似少年遊*11 小时前
【从基础到模型网络】深度学习-语义分割-ROI
人工智能·深度学习·卷积神经网络·语义分割·fcn·roi
摆烂仙君12 小时前
南京邮电大学金工实习答案
人工智能·深度学习·aigc