Mistral AI 团队发布 Mistral-7B-Instruct-v0.3

抱抱脸上线了 Mistral-7B-v0.3 的基础版和指令微调版。

相比于Mistral-7B-v0.2,新版本更新如下:

-- 词汇量从 32000 扩展到 32768

-- 支持 v3 分词器

-- 支持函数调用

Mistral-7B-v0.3:网页链接

Mistral-7B-Instruct-v0.3:网页链接 ​​​


从Hugging Face安装

复制代码
pip install mistral_inference

从Hugging Face下载

复制代码
from huggingface_hub import snapshot_download
from pathlib import Path

mistral_models_path = Path.home().joinpath('mistral_models', '7B-Instruct-v0.3')
mistral_models_path.mkdir(parents=True, exist_ok=True)

snapshot_download(repo_id="mistralai/Mistral-7B-Instruct-v0.3", allow_patterns=["params.json", "consolidated.safetensors", "tokenizer.model.v3"], local_dir=mistral_models_path)

Mistral-7B-Instruct-v0.3 模型的性能评估表明,与早期版本相比,该模型有重大改进。该模型已显示出根据用户指令生成连贯且适合上下文的文本的非凡能力。Mistral-7B-Instruct-v0.3 模型在实际测试中优于以前的模型,突出了其处理复杂语言任务的增强能力。例如,该模型可以高效管理多达 72.5 亿个参数,确保高细节和输出精度。但是,需要注意的是,此模型目前缺乏审核机制,这对于在需要审核输出以避免不适当或有害内容的环境中进行部署至关重要。

总之,Mistral-7B-Instruct-v0.3 模型解决了语言理解和生成的挑战;研究人员通过一系列战略改进增强了模型的功能。其中包括扩展词汇表、改进的分词器支持以及创新引入函数调用。Mistral-7B-Instruct-v0.3 模型展示了令人鼓舞的结果,强调了它对各种人工智能驱动应用程序的潜在影响。持续发展和社区参与对于进一步完善这一模式至关重要,特别是在实施必要的安全部署审核机制方面。

相关推荐
中杯可乐多加冰29 分钟前
【解决方案-RAGFlow】RAGFlow显示Task is queued、 Microsoft Visual C++ 14.0 or greater is required.
人工智能·大模型·llm·rag·ragflow·deepseek
一切皆有可能!!6 小时前
实践篇:利用ragas在自己RAG上实现LLM评估②
人工智能·语言模型
月白风清江有声8 小时前
爆炸仿真的学习日志
人工智能
华奥系科技9 小时前
智慧水务发展迅猛:从物联网架构到AIoT系统的跨越式升级
人工智能·物联网·智慧城市
R²AIN SUITE9 小时前
MCP协议重构AI Agent生态:万能插槽如何终结工具孤岛?
人工智能
b***25119 小时前
动力电池点焊机:驱动电池焊接高效与可靠的核心力量|比斯特自动化
人工智能·科技·自动化
Gyoku Mint9 小时前
机器学习×第二卷:概念下篇——她不再只是模仿,而是开始决定怎么靠近你
人工智能·python·算法·机器学习·pandas·ai编程·matplotlib
小和尚同志10 小时前
通俗易懂的 MCP 概念入门
人工智能·aigc
dudly10 小时前
大语言模型评测体系全解析(下篇):工具链、学术前沿与实战策略
人工智能·语言模型