【LeetCode算法】第69题:x的平方根

目录

一、题目描述

二、初次解答

三、官方解法

四、总结


一、题目描述

二、初次解答

1. 思路:第一次 想到的是让i从1开始遍历,看i*i==x是否成立,但是这样就会导致i*i超出了int的范围,无法正常求解。第二次 ,想着比较x/i与i的绝对值是否小于等于1,是的话x/i与i的最小值就是x的平方因数。虽然第二次这种方法可行,但是速度就很慢(以下代码就是第二次想到的方法)。第三次 ,想到提升查找效率能否使用二分查找,但是二分查找中间值时比较中间值的平方与x也会超出int界限,因此无从下手。结果 ,官方给出的二分查找中计算i*i时强转为long long,这样其他计算的数据都会自动类型提升至long long,就避免了超出int的局限性。但是如果未来遇到更大的数据类型时岂不是仍然不行。

2. 代码:

cpp 复制代码
int mySqrt(int x) {
    int i = 1;
    while (1){
        int ret = x / i;
        if (ret == i || ret == i - 1 || ret == i + 1) {
            return ret > i ? i : ret;
        } else {
            ++i;
        }
    }
}

**3. 优点:**容易想到,代码简单。

**4. 缺点:**因为每次都从1开始,执行速度非常慢。

三、官方解法

**1. 思路:牛顿迭代法,可以快速求解函数零点问题f(x)=0。**任取一个xi,通过牛顿迭代法获得xi+1,更接近函数零点。牛顿迭代法的实现与原理如下图所示:

2. 代码:

cpp 复制代码
int mySqrt(int x) {
    if (x == 0)
        return 0;
    double x0 = x;
    while (1){
        double xi = (x0 + x / x0) / 2;
        if (fabs(xi - x0) < 1e-7)
            break;
        x0 = xi;
    }
    return x0;
}

**3. 优点:**运行速度快。

**4. 缺点:**第一次难以想到。

四、总结

遇到代数方程难以求解时,将其转换为函数零点问题,用牛顿迭代法求解。

相关推荐
了一梨19 小时前
在Ubuntu中配置适配泰山派的交叉编译环境
linux·c语言·ubuntu
CQ_YM20 小时前
数据结构之单向链表
c语言·数据结构·链表
gihigo199820 小时前
matlab 基于瑞利衰落信道的误码率分析
算法
foxsen_xia20 小时前
go(基础06)——结构体取代类
开发语言·算法·golang
foxsen_xia21 小时前
go(基础08)——多态
算法·golang
leoufung21 小时前
用三色 DFS 拿下 Course Schedule(LeetCode 207)
算法·leetcode·深度优先
亦是远方21 小时前
南京邮电大学使用计算机求解问题实验一(C语言简单编程练习)
c语言·开发语言·实验报告·南京邮电大学
im_AMBER1 天前
算法笔记 18 二分查找
数据结构·笔记·学习·算法
C雨后彩虹1 天前
机器人活动区域
java·数据结构·算法·华为·面试
MarkHD1 天前
车辆TBOX科普 第53次 三位一体智能车辆监控:电子围栏算法、驾驶行为分析与故障诊断逻辑深度解析
算法