【LeetCode算法】第69题:x的平方根

目录

一、题目描述

二、初次解答

三、官方解法

四、总结


一、题目描述

二、初次解答

1. 思路:第一次 想到的是让i从1开始遍历,看i*i==x是否成立,但是这样就会导致i*i超出了int的范围,无法正常求解。第二次 ,想着比较x/i与i的绝对值是否小于等于1,是的话x/i与i的最小值就是x的平方因数。虽然第二次这种方法可行,但是速度就很慢(以下代码就是第二次想到的方法)。第三次 ,想到提升查找效率能否使用二分查找,但是二分查找中间值时比较中间值的平方与x也会超出int界限,因此无从下手。结果 ,官方给出的二分查找中计算i*i时强转为long long,这样其他计算的数据都会自动类型提升至long long,就避免了超出int的局限性。但是如果未来遇到更大的数据类型时岂不是仍然不行。

2. 代码:

cpp 复制代码
int mySqrt(int x) {
    int i = 1;
    while (1){
        int ret = x / i;
        if (ret == i || ret == i - 1 || ret == i + 1) {
            return ret > i ? i : ret;
        } else {
            ++i;
        }
    }
}

**3. 优点:**容易想到,代码简单。

**4. 缺点:**因为每次都从1开始,执行速度非常慢。

三、官方解法

**1. 思路:牛顿迭代法,可以快速求解函数零点问题f(x)=0。**任取一个xi,通过牛顿迭代法获得xi+1,更接近函数零点。牛顿迭代法的实现与原理如下图所示:

2. 代码:

cpp 复制代码
int mySqrt(int x) {
    if (x == 0)
        return 0;
    double x0 = x;
    while (1){
        double xi = (x0 + x / x0) / 2;
        if (fabs(xi - x0) < 1e-7)
            break;
        x0 = xi;
    }
    return x0;
}

**3. 优点:**运行速度快。

**4. 缺点:**第一次难以想到。

四、总结

遇到代数方程难以求解时,将其转换为函数零点问题,用牛顿迭代法求解。

相关推荐
aigcapi1 天前
RAG 系统的黑盒测试:从算法对齐视角解析 GEO 优化的技术指标体系
大数据·人工智能·算法
柯慕灵1 天前
7大推荐系统/算法框架对比
算法·推荐算法
adam-liu1 天前
Fun Audio Chat 论文+项目调研
算法·语音端到端·fun-audio-chat
栀秋6661 天前
你会先找行还是直接拍平?两种二分策略你Pick哪个?
前端·javascript·算法
如果你想拥有什么先让自己配得上拥有1 天前
数学思想和数学思维分别都有什么?
线性代数·算法·机器学习
永远前进不waiting1 天前
C复习——1
c语言·开发语言
长安er1 天前
LeetCode136/169/75/31/287 算法技巧题核心笔记
数据结构·算法·leetcode·链表·双指针
MarkHD1 天前
智能体在车联网中的应用:第29天 多智能体完全合作场景的核心算法:从CTDE思想到VDN与MADDPG的深度解析
算法
一路往蓝-Anbo1 天前
【第13期】中断机制详解 :从向量表到ISR
c语言·开发语言·stm32·单片机·嵌入式硬件
wanzhong23331 天前
CUDA学习5-矩阵乘法(共享内存版)
深度学习·学习·算法·cuda·高性能计算