ProtoASNet:用于超声心动图中主动脉瓣狭窄分类的动态原型网络,具备内在可解释性和不确定性意识

文章目录

  • [ProtoASNet: Dynamic Prototypes for Inherently Interpretable and Uncertainty-Aware Aortic Stenosis Classification in Echocardiography](#ProtoASNet: Dynamic Prototypes for Inherently Interpretable and Uncertainty-Aware Aortic Stenosis Classification in Echocardiography)

ProtoASNet: Dynamic Prototypes for Inherently Interpretable and Uncertainty-Aware Aortic Stenosis Classification in Echocardiography

摘要

主动脉瓣狭窄(Aortic Stenosis, AS)是一种常见的心脏瓣膜疾病,准确及时的诊断对于适当的治疗至关重要。目前大多数自动检测AS严重程度的方法依赖于黑箱模型,这些模型的信任度较低,阻碍了其在临床中的应用。为了解决这一问题,本文提出了一种名为ProtoASNet的原型网络,该网络直接从B模式超声心动图视频中检测AS,同时基于输入和学习到的时空原型之间的相似性进行可解释的预测。

核心贡献

可解释的预测:

ProtoASNet通过学习到的时空原型进行预测,这些原型通常突出如钙化和主动脉瓣叶片活动受限等标志性特征,从而提供临床相关的支持证据。

不确定性估计:

该网络利用弃权损失(abstention loss)来估计不确定性,通过定义一组捕捉观测数据中的歧义和信息不足的原型,提供了一个可以检测并解释其可能失败的可靠系统。
方法

原型网络架构:

ProtoASNet通过卷积神经网络提取输入视频的时空特征,然后将这些特征与学习到的原型进行比较,基于相似性进行分类。每个原型代表一种特定的特征模式,模型通过这些原型来解释和分类输入数据。

弃权损失:

在预测过程中,模型通过定义一组原型来捕捉数据中的不确定性区域。如果输入数据与这些原型的相似性较高,则标识为高不确定性区域,提示需要进一步的人工审核或更多数据支持。
代码地址

方法

图 1. ProtoASNet架构概览

(A) ProtoASNet架构概览。ProtoASNet从视频中提取时空特征向量,并将这些特征与学习到的原型进行比较。特征与原型之间的相似值被聚合以生成类别成员资格评分和不确定性评分。

(B) 表示不确定性的原型(蓝色)可以捕捉数据分布中固有模糊性的区域(绿色和黄色区域的交集)。在实际应用中,这个区域包含视觉质量较差的视频。

实验结果



相关推荐
强盛小灵通专卖员8 分钟前
DL00291-联邦学习以去中心化锂离子电池健康预测模型完整实现
人工智能·机器学习·深度强化学习·核心期刊·导师·小论文·大论文
Hello123网站16 分钟前
多墨智能-AI一键生成工作文档/流程图/思维导图
人工智能·流程图·ai工具
有Li1 小时前
CLIK-Diffusion:用于牙齿矫正的临床知识感知扩散模型|文献速递-深度学习人工智能医疗图像
人工智能·深度学习·文献·医学生
大唐荣华1 小时前
视觉语言模型(VLA)分类方法体系
人工智能·分类·机器人·具身智能
即兴小索奇1 小时前
AI应用商业化加速落地 2025智能体爆发与端侧创新成增长引擎
人工智能·搜索引擎·ai·商业·ai商业洞察·即兴小索奇
NeilNiu1 小时前
开源AI工具Midscene.js
javascript·人工智能·开源
nju_spy2 小时前
机器学习 - Kaggle项目实践(4)Toxic Comment Classification Challenge 垃圾评论分类问题
人工智能·深度学习·自然语言处理·tf-idf·南京大学·glove词嵌入·双头gru
计算机sci论文精选2 小时前
CVPR 2025 | 具身智能 | HOLODECK:一句话召唤3D世界,智能体的“元宇宙练功房”来了
人工智能·深度学习·机器学习·计算机视觉·机器人·cvpr·具身智能
ezl1fe2 小时前
RAG 每日一技(十八):手写SQL-RAG太累?LangChain的SQL智能体(Agent)前来救驾!
数据库·人工智能·后端
我星期八休息2 小时前
大模型 + 垂直场景:搜索/推荐/营销/客服领域开发新范式与技术实践
大数据·人工智能·python