pyspark==windows单机搭建

下载安装JDK17,配置JAVA_HOME

下载安装hadoop-3.3.5并完整替换bin目录,配置HADOOP_HOME

Index of /hadoop/common/hadoop-3.3.5

GitHub - cdarlint/winutils: winutils.exe hadoop.dll and hdfs.dll binaries for hadoop windows

下载spark配置SPARK_HOME

安装pyspark

Demo

遇到错误

org.apache.spark.SparkException: Python worker failed to connect back.

注意要指定python的地址

python 复制代码
from pyspark.sql import SparkSession
import time

# 创建SparkSession
spark = SparkSession.builder.appName("CSV to DataFrame").getOrCreate()

# 读取CSV文件到DataFrame
csv_file_path = "../large_test_file.csv"  # 替换为你的CSV文件路径
df = spark.read.csv(csv_file_path, header=True, inferSchema=True)

# 注册临时表以进行SQL查询
df.createOrReplaceTempView("csv_table")
start_time = time.time()
# 使用Spark SQL查询数据
sql_query = """
SELECT max(col_18) as final FROM csv_table
"""
result_df = spark.sql(sql_query)

# 显示查询结果
result_df.show()
print(f"datetime 模块测量时间: {time.time() - start_time}")
# datetime 模块测量时间: 0.9699978828430176
# 停止SparkSession
spark.stop()

环境

python3.10

python 复制代码
annotated-types==0.7.0
anyio==4.4.0
certifi==2024.2.2
click==8.1.7
cloudpickle==3.0.0
colorama==0.4.6
dask==2024.1.1
dask_sql==2024.3.0
distributed==2024.1.1
dnspython==2.6.1
email_validator==2.1.1
exceptiongroup==1.2.1
fastapi==0.111.0
fastapi-cli==0.0.4
fsspec==2024.5.0
h11==0.14.0
httpcore==1.0.5
httptools==0.6.1
httpx==0.27.0
idna==3.7
importlib_metadata==7.1.0
Jinja2==3.1.4
locket==1.0.0
markdown-it-py==3.0.0
MarkupSafe==2.1.5
mdurl==0.1.2
msgpack==1.0.8
numpy==1.26.4
orjson==3.10.3
packaging==24.0
pandas==2.2.2
partd==1.4.2
prompt_toolkit==3.0.45
psutil==5.9.8
py4j==0.10.9.7
pydantic==2.7.1
pydantic_core==2.18.2
Pygments==2.18.0
pyspark==3.5.1
python-dateutil==2.9.0.post0
python-dotenv==1.0.1
python-multipart==0.0.9
pytz==2024.1
PyYAML==6.0.1
rich==13.7.1
shellingham==1.5.4
six==1.16.0
sniffio==1.3.1
sortedcontainers==2.4.0
starlette==0.37.2
tabulate==0.9.0
tblib==3.0.0
toolz==0.12.1
tornado==6.4
typer==0.12.3
typing_extensions==4.12.0
tzdata==2024.1
tzlocal==5.2
ujson==5.10.0
urllib3==2.2.1
uvicorn==0.30.0
watchfiles==0.22.0
wcwidth==0.2.13
websockets==12.0
zict==3.0.0
zipp==3.19.0
相关推荐
Q26433650233 小时前
【有源码】spark与hadoop-情感挖掘+画像建模的携程酒店评价数据分析可视化系统-基于机器学习的携程酒店评价情感分析与竞争态势可视化
大数据·hadoop·python·机器学习·数据分析·spark·毕业设计
Just_Do_IT_OK1 天前
Docker--Spark
docker·容器·spark
会编程的李较瘦1 天前
【Spark学习】数据清洗
学习·ajax·spark
百度Geek说2 天前
百度大数据成本治理实践
hadoop·spark
梦里不知身是客112 天前
sparkSQL连接报错的一个解决方法
spark
源码之家2 天前
基于Python房价预测系统 数据分析 Flask框架 爬虫 随机森林回归预测模型、链家二手房 可视化大屏 大数据毕业设计(附源码)✅
大数据·爬虫·python·随机森林·数据分析·spark·flask
2501_941142643 天前
云计算与大数据:现代企业数字化转型的双引擎
spark
Saniffer_SH3 天前
通过近期测试简单聊一下究竟是直接选择Nvidia Spark还是4090/5090 GPU自建环境
大数据·服务器·图像处理·人工智能·驱动开发·spark·硬件工程
Q26433650233 天前
【有源码】基于Python的睡眠压力监测分析系统-基于Spark数据挖掘的睡眠压力动态可视化分析系统
大数据·hadoop·python·机器学习·数据挖掘·spark·课程设计
阳爱铭4 天前
ClickHouse 中至关重要的两类复制表引擎——ReplicatedMergeTree和 ReplicatedReplacingMergeTree
大数据·hive·hadoop·sql·clickhouse·spark·hbase