pyspark==windows单机搭建

下载安装JDK17,配置JAVA_HOME

下载安装hadoop-3.3.5并完整替换bin目录,配置HADOOP_HOME

Index of /hadoop/common/hadoop-3.3.5

GitHub - cdarlint/winutils: winutils.exe hadoop.dll and hdfs.dll binaries for hadoop windows

下载spark配置SPARK_HOME

安装pyspark

Demo

遇到错误

org.apache.spark.SparkException: Python worker failed to connect back.

注意要指定python的地址

python 复制代码
from pyspark.sql import SparkSession
import time

# 创建SparkSession
spark = SparkSession.builder.appName("CSV to DataFrame").getOrCreate()

# 读取CSV文件到DataFrame
csv_file_path = "../large_test_file.csv"  # 替换为你的CSV文件路径
df = spark.read.csv(csv_file_path, header=True, inferSchema=True)

# 注册临时表以进行SQL查询
df.createOrReplaceTempView("csv_table")
start_time = time.time()
# 使用Spark SQL查询数据
sql_query = """
SELECT max(col_18) as final FROM csv_table
"""
result_df = spark.sql(sql_query)

# 显示查询结果
result_df.show()
print(f"datetime 模块测量时间: {time.time() - start_time}")
# datetime 模块测量时间: 0.9699978828430176
# 停止SparkSession
spark.stop()

环境

python3.10

python 复制代码
annotated-types==0.7.0
anyio==4.4.0
certifi==2024.2.2
click==8.1.7
cloudpickle==3.0.0
colorama==0.4.6
dask==2024.1.1
dask_sql==2024.3.0
distributed==2024.1.1
dnspython==2.6.1
email_validator==2.1.1
exceptiongroup==1.2.1
fastapi==0.111.0
fastapi-cli==0.0.4
fsspec==2024.5.0
h11==0.14.0
httpcore==1.0.5
httptools==0.6.1
httpx==0.27.0
idna==3.7
importlib_metadata==7.1.0
Jinja2==3.1.4
locket==1.0.0
markdown-it-py==3.0.0
MarkupSafe==2.1.5
mdurl==0.1.2
msgpack==1.0.8
numpy==1.26.4
orjson==3.10.3
packaging==24.0
pandas==2.2.2
partd==1.4.2
prompt_toolkit==3.0.45
psutil==5.9.8
py4j==0.10.9.7
pydantic==2.7.1
pydantic_core==2.18.2
Pygments==2.18.0
pyspark==3.5.1
python-dateutil==2.9.0.post0
python-dotenv==1.0.1
python-multipart==0.0.9
pytz==2024.1
PyYAML==6.0.1
rich==13.7.1
shellingham==1.5.4
six==1.16.0
sniffio==1.3.1
sortedcontainers==2.4.0
starlette==0.37.2
tabulate==0.9.0
tblib==3.0.0
toolz==0.12.1
tornado==6.4
typer==0.12.3
typing_extensions==4.12.0
tzdata==2024.1
tzlocal==5.2
ujson==5.10.0
urllib3==2.2.1
uvicorn==0.30.0
watchfiles==0.22.0
wcwidth==0.2.13
websockets==12.0
zict==3.0.0
zipp==3.19.0
相关推荐
亚林瓜子15 小时前
AWS中国云中的ETL之从Amazon Glue Data Catalog搬数据到MySQL(Glue版)
python·mysql·spark·etl·aws·glue·py
【赫兹威客】浩哥15 小时前
【赫兹威客】伪分布式Spark测试教程
大数据·分布式·spark
yumgpkpm16 小时前
在AI语言大模型时代 Cloudera CDP(华为CMP 鲲鹏版)对自有知识的保护
人工智能·hadoop·华为·zookeeper·spark·kafka
计算机毕业编程指导师17 小时前
【Python大数据选题】基于Hadoop+Spark奥运会金牌榜可视化分析系统源码 毕业设计 选题推荐 毕设选题 数据分析 机器学习 数据挖掘
大数据·hadoop·python·计算机·spark·毕业设计·奥运会金牌
【赫兹威客】浩哥2 天前
【赫兹威客】完全分布式Spark测试教程
大数据·分布式·spark
鸿乃江边鸟2 天前
Spark Datafusion Comet 向量化Rule--CometExecRule分析 规则转换分析
大数据·spark·native
Light602 天前
领码 SPARK aPaaS 前端开发体系 技术架构(最终版)
低代码·spark·前端架构·apaas·模型驱动·能力分层·上下文契约
【赫兹威客】浩哥2 天前
【赫兹威客】完全分布式Hive(on Spark)测试教程
hive·分布式·spark
Gain_chance2 天前
19-学习笔记尚硅谷数仓搭建-数据仓库运行环境搭建(spark安装及配置)
数据仓库·笔记·学习·spark
麦兜和小可的舅舅3 天前
Spark to ClickHouse由于DNS问题导致Stage重试的Task竞态分析和问题解决过程
clickhouse·spark