pyspark==windows单机搭建

下载安装JDK17,配置JAVA_HOME

下载安装hadoop-3.3.5并完整替换bin目录,配置HADOOP_HOME

Index of /hadoop/common/hadoop-3.3.5

GitHub - cdarlint/winutils: winutils.exe hadoop.dll and hdfs.dll binaries for hadoop windows

下载spark配置SPARK_HOME

安装pyspark

Demo

遇到错误

org.apache.spark.SparkException: Python worker failed to connect back.

注意要指定python的地址

python 复制代码
from pyspark.sql import SparkSession
import time

# 创建SparkSession
spark = SparkSession.builder.appName("CSV to DataFrame").getOrCreate()

# 读取CSV文件到DataFrame
csv_file_path = "../large_test_file.csv"  # 替换为你的CSV文件路径
df = spark.read.csv(csv_file_path, header=True, inferSchema=True)

# 注册临时表以进行SQL查询
df.createOrReplaceTempView("csv_table")
start_time = time.time()
# 使用Spark SQL查询数据
sql_query = """
SELECT max(col_18) as final FROM csv_table
"""
result_df = spark.sql(sql_query)

# 显示查询结果
result_df.show()
print(f"datetime 模块测量时间: {time.time() - start_time}")
# datetime 模块测量时间: 0.9699978828430176
# 停止SparkSession
spark.stop()

环境

python3.10

python 复制代码
annotated-types==0.7.0
anyio==4.4.0
certifi==2024.2.2
click==8.1.7
cloudpickle==3.0.0
colorama==0.4.6
dask==2024.1.1
dask_sql==2024.3.0
distributed==2024.1.1
dnspython==2.6.1
email_validator==2.1.1
exceptiongroup==1.2.1
fastapi==0.111.0
fastapi-cli==0.0.4
fsspec==2024.5.0
h11==0.14.0
httpcore==1.0.5
httptools==0.6.1
httpx==0.27.0
idna==3.7
importlib_metadata==7.1.0
Jinja2==3.1.4
locket==1.0.0
markdown-it-py==3.0.0
MarkupSafe==2.1.5
mdurl==0.1.2
msgpack==1.0.8
numpy==1.26.4
orjson==3.10.3
packaging==24.0
pandas==2.2.2
partd==1.4.2
prompt_toolkit==3.0.45
psutil==5.9.8
py4j==0.10.9.7
pydantic==2.7.1
pydantic_core==2.18.2
Pygments==2.18.0
pyspark==3.5.1
python-dateutil==2.9.0.post0
python-dotenv==1.0.1
python-multipart==0.0.9
pytz==2024.1
PyYAML==6.0.1
rich==13.7.1
shellingham==1.5.4
six==1.16.0
sniffio==1.3.1
sortedcontainers==2.4.0
starlette==0.37.2
tabulate==0.9.0
tblib==3.0.0
toolz==0.12.1
tornado==6.4
typer==0.12.3
typing_extensions==4.12.0
tzdata==2024.1
tzlocal==5.2
ujson==5.10.0
urllib3==2.2.1
uvicorn==0.30.0
watchfiles==0.22.0
wcwidth==0.2.13
websockets==12.0
zict==3.0.0
zipp==3.19.0
相关推荐
伟大的大威13 小时前
在 NVIDIA DGX Spark部署 Stable Diffusion 3.5 并使用ComfyUI
stable diffusion·spark·comfyui
叫我:松哥14 小时前
基于Spark智能推荐算法的农业作物推荐系统,推荐算法使用Spark ML风格推荐引擎
大数据·python·机器学习·spark-ml·spark·flask·推荐算法
是阿威啊15 小时前
【用户行为归因分析项目】- 【企业级项目开发第五站】数据采集并加载到hive表
大数据·数据仓库·hive·hadoop·spark·scala
云器科技1 天前
告别Spark?大数据架构的十字路口与技术抉择
大数据·架构·spark·lakehouse·数据湖仓
云器科技2 天前
云器Lakehouse2025年03月版本发布:打造更强大、更智能、更安全的数据管理新体验
大数据·数据库·架构·spark·lakehouse
会编程的李较瘦3 天前
【期末考试总结】spark课程知识点
大数据·单例模式·spark
linweidong4 天前
Spark Shuffle的优化
大数据·分布式·spark
天码-行空5 天前
【大数据环境安装指南】ZooKeeper搭建spark高可用集群教程
大数据·linux·运维·zookeeper·spark
想你依然心痛6 天前
Spark大数据分析与实战笔记(第六章 Kafka分布式发布订阅消息系统-02)
笔记·分布式·spark
云器科技6 天前
NinjaVan x 云器Lakehouse: 从传统自建Spark架构升级到新一代湖仓架构
大数据·ai·架构·spark·湖仓平台