pyspark==windows单机搭建

下载安装JDK17,配置JAVA_HOME

下载安装hadoop-3.3.5并完整替换bin目录,配置HADOOP_HOME

Index of /hadoop/common/hadoop-3.3.5

GitHub - cdarlint/winutils: winutils.exe hadoop.dll and hdfs.dll binaries for hadoop windows

下载spark配置SPARK_HOME

安装pyspark

Demo

遇到错误

org.apache.spark.SparkException: Python worker failed to connect back.

注意要指定python的地址

python 复制代码
from pyspark.sql import SparkSession
import time

# 创建SparkSession
spark = SparkSession.builder.appName("CSV to DataFrame").getOrCreate()

# 读取CSV文件到DataFrame
csv_file_path = "../large_test_file.csv"  # 替换为你的CSV文件路径
df = spark.read.csv(csv_file_path, header=True, inferSchema=True)

# 注册临时表以进行SQL查询
df.createOrReplaceTempView("csv_table")
start_time = time.time()
# 使用Spark SQL查询数据
sql_query = """
SELECT max(col_18) as final FROM csv_table
"""
result_df = spark.sql(sql_query)

# 显示查询结果
result_df.show()
print(f"datetime 模块测量时间: {time.time() - start_time}")
# datetime 模块测量时间: 0.9699978828430176
# 停止SparkSession
spark.stop()

环境

python3.10

python 复制代码
annotated-types==0.7.0
anyio==4.4.0
certifi==2024.2.2
click==8.1.7
cloudpickle==3.0.0
colorama==0.4.6
dask==2024.1.1
dask_sql==2024.3.0
distributed==2024.1.1
dnspython==2.6.1
email_validator==2.1.1
exceptiongroup==1.2.1
fastapi==0.111.0
fastapi-cli==0.0.4
fsspec==2024.5.0
h11==0.14.0
httpcore==1.0.5
httptools==0.6.1
httpx==0.27.0
idna==3.7
importlib_metadata==7.1.0
Jinja2==3.1.4
locket==1.0.0
markdown-it-py==3.0.0
MarkupSafe==2.1.5
mdurl==0.1.2
msgpack==1.0.8
numpy==1.26.4
orjson==3.10.3
packaging==24.0
pandas==2.2.2
partd==1.4.2
prompt_toolkit==3.0.45
psutil==5.9.8
py4j==0.10.9.7
pydantic==2.7.1
pydantic_core==2.18.2
Pygments==2.18.0
pyspark==3.5.1
python-dateutil==2.9.0.post0
python-dotenv==1.0.1
python-multipart==0.0.9
pytz==2024.1
PyYAML==6.0.1
rich==13.7.1
shellingham==1.5.4
six==1.16.0
sniffio==1.3.1
sortedcontainers==2.4.0
starlette==0.37.2
tabulate==0.9.0
tblib==3.0.0
toolz==0.12.1
tornado==6.4
typer==0.12.3
typing_extensions==4.12.0
tzdata==2024.1
tzlocal==5.2
ujson==5.10.0
urllib3==2.2.1
uvicorn==0.30.0
watchfiles==0.22.0
wcwidth==0.2.13
websockets==12.0
zict==3.0.0
zipp==3.19.0
相关推荐
Light601 天前
数据要素与数据知识产权交易中心建设专项方案——以领码 SPARK 融合平台为技术底座,构建可评估、可验证、可交易、可监管的数据要素工程体系
大数据·分布式·spark
毕设源码-钟学长1 天前
【开题答辩全过程】以 基于Spark机器学习算法的体育新闻智能分类系统设计与实现为例,包含答辩的问题和答案
算法·机器学习·spark
yumgpkpm2 天前
Cloudera CDP7、CDH5、CDH6 在华为鲲鹏 ARM 麒麟KylinOS做到无缝切换平缓迁移过程
大数据·arm开发·华为·flink·spark·kafka·cloudera
青云交3 天前
Java 大视界 -- Java+Spark 构建企业级用户画像平台:从数据采集到标签输出全流程(437)
java·开发语言·spark·hbase 优化·企业级用户画像·标签计算·高并发查询
qq_12498707533 天前
基于spark的新闻文本分类系统(源码+论文+部署+安装)
大数据·分类·数据挖掘·spark
yumgpkpm3 天前
Iceberg在Cloudera CDP集群详细操作步骤
大数据·人工智能·hive·zookeeper·spark·开源·cloudera
梦里不知身是客113 天前
spark的统一内存管理机制
java·大数据·spark
华阙之梦3 天前
【仅公网互通的 Spark 集群通信与配置实战方案】
大数据·ajax·spark
心止水j4 天前
数据采集-----案例
spark
梦里不知身是客114 天前
RDD分区的设定规则
spark