Leetcode:两数之和

普通版本(暴力枚举)

题目链接: 1. 两数之和 - 力扣(LeetCode)

cpp 复制代码
//自己写的for循环
class Solution {
public:
    vector<int> twoSum(vector<int>& nums, int target) {
        vector<int> res;
        bool flag = true;
        for(int i = 0;i<nums.size();i++)
        {
            for(int j = i+1;j<nums.size();j++)
            {
                if(nums[i] + nums[j] == target)
                {
                    res.push_back(i);
                    res.push_back(j);
                    flag = false;
                    break;
                }
            }
            if(flag == false)
            {
                break;
            }
        }
               return res;
    }
};

//官方提供的优化后的for循环
class Solution {
public:
    vector<int> twoSum(vector<int>& nums, int target) {
        int n = nums.size();
        for (int i = 0; i < n; ++i) {
            for (int j = i + 1; j < n; ++j) {
                if (nums[i] + nums[j] == target) {
                    return {i, j};
                }
            }
        }
        return {};
    }
};
  • 时间复杂度:O(N^2)
  • **空间复杂度:**O(1)
  • vector<int> res确实会对算法的空间复杂度产生影响,但这种影响通常是可以忽略不计的

优化版本(哈希表)

中心思想:哈希表的边找边存,与先找后存

cpp 复制代码
class Solution {
public:
    vector<int> twoSum(vector<int>& nums, int target) {
        unordered_map<int, int> hashtable;
        for (int i = 0; i < nums.size(); ++i) {
            auto it = hashtable.find(target - nums[i]);
            if (it != hashtable.end()) {
                return {it->second, i};
            }
            hashtable[nums[i]] = i;
        }
        return {};//没有一个满足条件的结果,返回空{}
    }
};
  • 时间复杂度:O(N)(因为向哈希表插入时因为每个键都要经历哈希函数得到一个在哈希表中的映射位置,且因为该题目说明之会出现一个符合要求的数组,那么就不用担心键覆盖的问题,只需要依靠键找到想要的值并返回即可,哈希表的查找时间复杂度为O(1)省去了for循环的O(N))
  • 空间复杂度:O(N)
  • 如果**"** target - 当前i下标对应的数组中的元素 "的结果(在find看来该结果就是要在哈希表中要找的某个键)可以在哈希表中已有的键中找到就将找到的键的值和当前数组中元素的下标一起返回,如果找不到就利用hashtable[nums[i]] = i进行存储
  • hashtable[nums[i]] = i的作用是将原数组中的i下标处的数字nums[i]作为键,下标i作为值,如果键存在就更新,键不存在就插入
  • 使用了初始化列表的方式返回一个包含两个元素的vector<int>

两种算法空间复杂度不同的原因:``在该题中哈希表的大小与存储元素的数量成正比,有多少元素哈希表就要有多大,而res的大小与元素个数的不成正比,最终向res中存放的元素个数只有两个,所以即便创建了一个可以存放N个元素的动态数组但是因为题目所给条件它的实际空间复杂度还是为O(1)

~over~

相关推荐
为什么这亚子30 分钟前
九、Go语言快速入门之map
运维·开发语言·后端·算法·云原生·golang·云计算
40 分钟前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习
~yY…s<#>1 小时前
【刷题17】最小栈、栈的压入弹出、逆波兰表达式
c语言·数据结构·c++·算法·leetcode
幸运超级加倍~2 小时前
软件设计师-上午题-16 算法(4-5分)
笔记·算法
yannan201903132 小时前
【算法】(Python)动态规划
python·算法·动态规划
埃菲尔铁塔_CV算法2 小时前
人工智能图像算法:开启视觉新时代的钥匙
人工智能·算法
EasyCVR2 小时前
EHOME视频平台EasyCVR视频融合平台使用OBS进行RTMP推流,WebRTC播放出现抖动、卡顿如何解决?
人工智能·算法·ffmpeg·音视频·webrtc·监控视频接入
linsa_pursuer2 小时前
快乐数算法
算法·leetcode·职场和发展
小芒果_012 小时前
P11229 [CSP-J 2024] 小木棍
c++·算法·信息学奥赛
qq_434085902 小时前
Day 52 || 739. 每日温度 、 496.下一个更大元素 I 、503.下一个更大元素II
算法