【入门】使用sklearn实现的KNN算法:鸢尾花数据集分类预测

目录

前言
第一步:安装和导入sklean模块
第二步:获取数据
第二步:分割出训练集和测试集
第三步:训练模型
第四步:测试结果
总结

前言

本文将介绍如何利用K最近邻(KNN)算法对经典的鸢尾花数据集进行分类预测。首先,我们会加载数据集并进行数据的拆分,然后利用KNN算法训练模型。最后,我们将展示模型对测试集的预测结果,并与真实标签进行对比验证,以帮助读者更好地理解KNN算法在分类问题中的应用。


第一步:安装和导入sklean模块

1.命令行安装sklearn

pip install -U scikit-learn

2.导入模块

python 复制代码
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier

第二步:获取数据

python 复制代码
#使用sklearn自带的datasets模块中的load_iris函数加载了鸢尾花(iris)数据集
iris = datasets.load_iris()
#提取出特征数据
iris_X=iris.data
#目标标签
iris_y=iris.target

第二步:分割出训练集和测试集

python 复制代码
#会打乱数据
#test_size测试比例,train_test_split把训练数据和测试数据分开
X_train,X_test,y_train,y_test=train_test_split(iris_X,iris_y,test_size=0.3)

第三步:训练模型

python 复制代码
#训练模型
knn=KNeighborsClassifier()
knn.fit(X_train,y_train)

第四步:测试结果

python 复制代码
#预测值
print(knn.predict(X_test))
# [0 0 1 0 2 2 1 1 0 0 2 1 2 2 2 2 0 0 2 0 2 2 0 0 0 2 0 1 1 0 0 2 0 2 2 0 1
#  1 0 1 1 2 0 1 2]
#真实值
print(y_test)
# [0 0 1 0 2 2 1 1 0 0 2 1 2 2 1 2 0 0 2 0 2 2 0 0 0 2 0 1 1 0 0 2 0 2 2 0 1
#  1 0 1 1 2 0 1 2]

结果大差不差~


总结

通过本文的讲解,我们深入探讨了KNN算法在机器学习中的应用。通过实际操作鸢尾花数据集,我们展示了如何使用KNN算法对数据进行分类预测,并验证了模型的准确性。希望本文能够帮助读者更好地理解KNN算法的原理和实际应用,为进一步学习机器学习算法奠定基础。

相关推荐
智者知已应修善业1 小时前
【c语言蓝桥杯计算卡片题】2023-2-12
c语言·c++·经验分享·笔记·算法·蓝桥杯
hansang_IR1 小时前
【题解】洛谷 P2330 [SCOI2005] 繁忙的都市 [生成树]
c++·算法·最小生成树
Croa-vo1 小时前
PayPal OA 全流程复盘|题型体验 + 成绩反馈 + 通关经验
数据结构·经验分享·算法·面试·职场和发展
AndrewHZ2 小时前
【图像处理基石】 怎么让图片变成波普风?
图像处理·算法·计算机视觉·风格迁移·cv
无极小卒2 小时前
如何在三维空间中生成任意方向的矩形内部点位坐标
开发语言·算法·c#
FMRbpm2 小时前
链表中出现的问题
数据结构·c++·算法·链表·新手入门
Kuo-Teng2 小时前
LeetCode 206: Reverse Linked List
java·算法·leetcode·职场和发展
庸子3 小时前
Kubernetes调度器深度解析:从资源分配到亲和性策略的架构师之路
java·算法·云原生·贪心算法·kubernetes·devops
Sunhen_Qiletian3 小时前
YOLOv2算法详解(上篇):从经典到进化的目标检测之路
算法·yolo·目标检测
QTreeY1233 小时前
detr目标检测+deepsort/strongsort/bytetrack/botsort算法的多目标跟踪实现
人工智能·算法·yolo·目标检测·计算机视觉·目标跟踪