使用 CNN 训练自己的数据集

CNN(练习数据集)

1.导包:

python 复制代码
import pandas as pd
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from tensorflow.keras.optimizers import Adam
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.preprocessing import LabelBinarizer
import matplotlib.pyplot as plt
import pickle
import pathlib
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers, models

输出结果:

2.导入数据集:

python 复制代码
# 定义超参数
data_dir = "D:\JUANJI"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*.jpg')))
print("图片总数为:", image_count)
batch_size = 30
img_height = 180
img_width = 180

输出结果:

3. 使用image_dataset_from_directory()将数据加载tf.data.Dataset中:

python 复制代码
#  使用image_dataset_from_directory()将数据加载到tf.data.Dataset中
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,  # 验证集0.2
    subset="training",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

输出结果:

4. 查看数据集中的一部分图像,以及它们对应的标签:

python 复制代码
class_names = train_ds.class_names
print(class_names)
python 复制代码
# 可视化
plt.figure(figsize=(16, 8))
for images, labels in train_ds.take(1):
    for i in range(16):
        ax = plt.subplot(4, 4, i + 1)
        # plt.imshow(images[i], cmap=plt.cm.binary)
        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        plt.axis("off")
plt.show()

输出结果:

5.迭代数据集 train_ds,以便查看第一批图像和标签的形状:

python 复制代码
for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

输出结果:

6.使用TensorFlow的ImageDataGenerator类来创建一个数据增强的对象:

python 复制代码
aug = ImageDataGenerator(rotation_range=30, width_shift_range=0.1,
            height_shift_range=0.1, shear_range=0.2, zoom_range=0.2,
            horizontal_flip=True, fill_mode="nearest")
x = aug.flow(image_batch, labels_batch)
AUTOTUNE = tf.data.AUTOTUNE

输出结果:

7.将数据集缓存到内存中,加快速度:

python 复制代码
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

输出结果:

8. 通过卷积层和池化层提取特征,再通过全连接层进行分类:

python 复制代码
# 为了增加模型的泛化能力,增加了Dropout层,并将最大池化层更新为平均池化层
num_classes = 3
model = models.Sequential([
    layers.experimental.preprocessing.Rescaling(1./255,input_shape=(img_height,img_width, 3)),
    layers.Conv2D(32, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(128, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(256, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Flatten(),
    layers.Dense(512, activation='relu'),
    layers.Dense(num_classes)
])

输出结果:

9.打印网络结构:

python 复制代码
model.summary()

输出结果:

10.设置优化器,定义了训练轮次和批量大小:

python 复制代码
# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=0.001)

model.compile(optimizer=opt,
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

EPOCHS = 100
BS = 5

输出结果:

11.训练数据集:

python 复制代码
# 训练网络
# model.fit 可同时处理训练和即时扩充的增强数据。
# 我们必须将训练数据作为第一个参数传递给生成器。生成器将根据我们先前进行的设置生成批量的增强训练数据。
for images_train, labels_train in train_ds:
    continue
for images_test, labels_test in val_ds:
    continue
history = model.fit(x=aug.flow(images_train,labels_train, batch_size=BS),
                 validation_data=(images_test,labels_test),
steps_per_epoch=1,epochs=EPOCHS)

输出结果:

12.画出图像:

python 复制代码
# 画出训练精确度和损失图
N = np.arange(0, EPOCHS)
plt.style.use("ggplot")
plt.figure()
plt.plot(N, history.history["loss"], label="train_loss")
plt.plot(N, history.history["val_loss"], label="val_loss")
plt.plot(N, history.history["accuracy"], label="train_acc")
plt.plot(N, history.history["val_accuracy"], label="val_acc")
plt.title("Aug Training Loss and Accuracy")
plt.xlabel("Epoch #")
plt.ylabel("Loss/Accuracy")
plt.legend(loc='upper right')  # legend显示位置
plt.show()

输出结果:

13.评估您的模型在验证数据集的性能:

python 复制代码
test_loss, test_acc = model.evaluate(val_ds, verbose=2)
print(test_loss, test_acc)

输出结果:

14.输出在验证集上的预测结果和真实值的对比:

python 复制代码
#  优化2 输出在验证集上的预测结果和真实值的对比
pre = model.predict(val_ds)
for images, labels in val_ds.take(1):
    for i in range(4):
        ax = plt.subplot(1, 4, i + 1)
        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        plt.xticks([])
        plt.yticks([])
        # plt.xlabel('pre: ' + class_names[np.argmax(pre[i])] + ' real: ' + class_names[labels[i]])
        plt.xlabel('pre: ' + class_names[np.argmax(pre[i])])
        print('pre: ' + str(class_names[np.argmax(pre[i])]) + ' real: ' + class_names[labels[i]])
plt.show()

输出结果:

15.输出可视化报表:

python 复制代码
print(labels_test)
print(labels)
print(pre)
print(class_names)
from sklearn.metrics import classification_report
# 优化1 输出可视化报表
print(classification_report(labels_test,
                          pre.argmax(axis=1),
target_names=class_names))

输出结果:

相关推荐
人工智能AI技术1 分钟前
AI智能体商业化实战:解锁营销/医疗/制造三大高壁垒场景开发技巧
人工智能
人工智能AI技术3 分钟前
Agent的核心特质:自主决策、感知环境、持续交互
人工智能
no24544105 分钟前
RAGFlow 全面接入 MinerU 2.0,支持 pipeline、vlm-transformers、vlm-sglang 三种模式,解析精度大幅度up
java·大数据·人工智能·python·ai·sglang
俞凡11 分钟前
AI 智能体高可靠设计模式:并行混合搜索融合
人工智能
hudawei99612 分钟前
google.mlkit:face-detection和 opencv的人脸识别有什么区别
人工智能·opencv·计算机视觉·google·人脸识别·mlkit·face-detection
轻竹办公PPT14 分钟前
AI 自动生成 PPT 实用吗?深度体验后的客观评价
人工智能·python·powerpoint
2301_8002561115 分钟前
【人工智能引论期末复习】第4章 机器学习3-无监督学习
人工智能·学习·机器学习
jishijun20419 分钟前
语音输入新选择:Handy - 注重隐私的离线语音转文本工具
人工智能
格林威19 分钟前
多光源条件下图像一致性校正:消除阴影与高光干扰的 6 个核心策略,附 OpenCV+Halcon 实战代码!
人工智能·数码相机·opencv·算法·计算机视觉·分类·视觉检测
摆烂咸鱼~19 分钟前
机器学习(14)
人工智能·机器学习