使用 CNN 训练自己的数据集

CNN(练习数据集)

1.导包:

python 复制代码
import pandas as pd
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from tensorflow.keras.optimizers import Adam
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.preprocessing import LabelBinarizer
import matplotlib.pyplot as plt
import pickle
import pathlib
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers, models

输出结果:

2.导入数据集:

python 复制代码
# 定义超参数
data_dir = "D:\JUANJI"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*.jpg')))
print("图片总数为:", image_count)
batch_size = 30
img_height = 180
img_width = 180

输出结果:

3. 使用image_dataset_from_directory()将数据加载tf.data.Dataset中:

python 复制代码
#  使用image_dataset_from_directory()将数据加载到tf.data.Dataset中
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,  # 验证集0.2
    subset="training",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

输出结果:

4. 查看数据集中的一部分图像,以及它们对应的标签:

python 复制代码
class_names = train_ds.class_names
print(class_names)
python 复制代码
# 可视化
plt.figure(figsize=(16, 8))
for images, labels in train_ds.take(1):
    for i in range(16):
        ax = plt.subplot(4, 4, i + 1)
        # plt.imshow(images[i], cmap=plt.cm.binary)
        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        plt.axis("off")
plt.show()

输出结果:

5.迭代数据集 train_ds,以便查看第一批图像和标签的形状:

python 复制代码
for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

输出结果:

6.使用TensorFlow的ImageDataGenerator类来创建一个数据增强的对象:

python 复制代码
aug = ImageDataGenerator(rotation_range=30, width_shift_range=0.1,
            height_shift_range=0.1, shear_range=0.2, zoom_range=0.2,
            horizontal_flip=True, fill_mode="nearest")
x = aug.flow(image_batch, labels_batch)
AUTOTUNE = tf.data.AUTOTUNE

输出结果:

7.将数据集缓存到内存中,加快速度:

python 复制代码
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

输出结果:

8. 通过卷积层和池化层提取特征,再通过全连接层进行分类:

python 复制代码
# 为了增加模型的泛化能力,增加了Dropout层,并将最大池化层更新为平均池化层
num_classes = 3
model = models.Sequential([
    layers.experimental.preprocessing.Rescaling(1./255,input_shape=(img_height,img_width, 3)),
    layers.Conv2D(32, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(128, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(256, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Flatten(),
    layers.Dense(512, activation='relu'),
    layers.Dense(num_classes)
])

输出结果:

9.打印网络结构:

python 复制代码
model.summary()

输出结果:

10.设置优化器,定义了训练轮次和批量大小:

python 复制代码
# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=0.001)

model.compile(optimizer=opt,
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

EPOCHS = 100
BS = 5

输出结果:

11.训练数据集:

python 复制代码
# 训练网络
# model.fit 可同时处理训练和即时扩充的增强数据。
# 我们必须将训练数据作为第一个参数传递给生成器。生成器将根据我们先前进行的设置生成批量的增强训练数据。
for images_train, labels_train in train_ds:
    continue
for images_test, labels_test in val_ds:
    continue
history = model.fit(x=aug.flow(images_train,labels_train, batch_size=BS),
                 validation_data=(images_test,labels_test),
steps_per_epoch=1,epochs=EPOCHS)

输出结果:

12.画出图像:

python 复制代码
# 画出训练精确度和损失图
N = np.arange(0, EPOCHS)
plt.style.use("ggplot")
plt.figure()
plt.plot(N, history.history["loss"], label="train_loss")
plt.plot(N, history.history["val_loss"], label="val_loss")
plt.plot(N, history.history["accuracy"], label="train_acc")
plt.plot(N, history.history["val_accuracy"], label="val_acc")
plt.title("Aug Training Loss and Accuracy")
plt.xlabel("Epoch #")
plt.ylabel("Loss/Accuracy")
plt.legend(loc='upper right')  # legend显示位置
plt.show()

输出结果:

13.评估您的模型在验证数据集的性能:

python 复制代码
test_loss, test_acc = model.evaluate(val_ds, verbose=2)
print(test_loss, test_acc)

输出结果:

14.输出在验证集上的预测结果和真实值的对比:

python 复制代码
#  优化2 输出在验证集上的预测结果和真实值的对比
pre = model.predict(val_ds)
for images, labels in val_ds.take(1):
    for i in range(4):
        ax = plt.subplot(1, 4, i + 1)
        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        plt.xticks([])
        plt.yticks([])
        # plt.xlabel('pre: ' + class_names[np.argmax(pre[i])] + ' real: ' + class_names[labels[i]])
        plt.xlabel('pre: ' + class_names[np.argmax(pre[i])])
        print('pre: ' + str(class_names[np.argmax(pre[i])]) + ' real: ' + class_names[labels[i]])
plt.show()

输出结果:

15.输出可视化报表:

python 复制代码
print(labels_test)
print(labels)
print(pre)
print(class_names)
from sklearn.metrics import classification_report
# 优化1 输出可视化报表
print(classification_report(labels_test,
                          pre.argmax(axis=1),
target_names=class_names))

输出结果:

相关推荐
互联网全栈架构12 分钟前
遨游Spring AI:第一盘菜Hello World
java·人工智能·后端·spring
m0_4652157913 分钟前
大语言模型解析
人工智能·语言模型·自然语言处理
张较瘦_1 小时前
[论文阅读] 人工智能+软件工程 | 结对编程中的知识转移新图景
人工智能·软件工程·结对编程
小Q小Q2 小时前
cmake编译LASzip和LAStools
人工智能·计算机视觉
yzx9910132 小时前
基于 Q-Learning 算法和 CNN 的强化学习实现方案
人工智能·算法·cnn
token-go2 小时前
[特殊字符] 革命性AI提示词优化平台正式开源!
人工智能·开源
cooldream20093 小时前
华为云Flexus+DeepSeek征文|基于华为云Flexus X和DeepSeek-R1打造个人知识库问答系统
人工智能·华为云·dify
Blossom.1186 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
DFminer8 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人
郄堃Deep Traffic8 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划