使用 CNN 训练自己的数据集

CNN(练习数据集)

1.导包:

python 复制代码
import pandas as pd
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from tensorflow.keras.optimizers import Adam
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.preprocessing import LabelBinarizer
import matplotlib.pyplot as plt
import pickle
import pathlib
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers, models

输出结果:

2.导入数据集:

python 复制代码
# 定义超参数
data_dir = "D:\JUANJI"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*.jpg')))
print("图片总数为:", image_count)
batch_size = 30
img_height = 180
img_width = 180

输出结果:

3. 使用image_dataset_from_directory()将数据加载tf.data.Dataset中:

python 复制代码
#  使用image_dataset_from_directory()将数据加载到tf.data.Dataset中
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,  # 验证集0.2
    subset="training",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

输出结果:

4. 查看数据集中的一部分图像,以及它们对应的标签:

python 复制代码
class_names = train_ds.class_names
print(class_names)
python 复制代码
# 可视化
plt.figure(figsize=(16, 8))
for images, labels in train_ds.take(1):
    for i in range(16):
        ax = plt.subplot(4, 4, i + 1)
        # plt.imshow(images[i], cmap=plt.cm.binary)
        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        plt.axis("off")
plt.show()

输出结果:

5.迭代数据集 train_ds,以便查看第一批图像和标签的形状:

python 复制代码
for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

输出结果:

6.使用TensorFlow的ImageDataGenerator类来创建一个数据增强的对象:

python 复制代码
aug = ImageDataGenerator(rotation_range=30, width_shift_range=0.1,
            height_shift_range=0.1, shear_range=0.2, zoom_range=0.2,
            horizontal_flip=True, fill_mode="nearest")
x = aug.flow(image_batch, labels_batch)
AUTOTUNE = tf.data.AUTOTUNE

输出结果:

7.将数据集缓存到内存中,加快速度:

python 复制代码
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

输出结果:

8. 通过卷积层和池化层提取特征,再通过全连接层进行分类:

python 复制代码
# 为了增加模型的泛化能力,增加了Dropout层,并将最大池化层更新为平均池化层
num_classes = 3
model = models.Sequential([
    layers.experimental.preprocessing.Rescaling(1./255,input_shape=(img_height,img_width, 3)),
    layers.Conv2D(32, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(128, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(256, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Flatten(),
    layers.Dense(512, activation='relu'),
    layers.Dense(num_classes)
])

输出结果:

9.打印网络结构:

python 复制代码
model.summary()

输出结果:

10.设置优化器,定义了训练轮次和批量大小:

python 复制代码
# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=0.001)

model.compile(optimizer=opt,
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

EPOCHS = 100
BS = 5

输出结果:

11.训练数据集:

python 复制代码
# 训练网络
# model.fit 可同时处理训练和即时扩充的增强数据。
# 我们必须将训练数据作为第一个参数传递给生成器。生成器将根据我们先前进行的设置生成批量的增强训练数据。
for images_train, labels_train in train_ds:
    continue
for images_test, labels_test in val_ds:
    continue
history = model.fit(x=aug.flow(images_train,labels_train, batch_size=BS),
                 validation_data=(images_test,labels_test),
steps_per_epoch=1,epochs=EPOCHS)

输出结果:

12.画出图像:

python 复制代码
# 画出训练精确度和损失图
N = np.arange(0, EPOCHS)
plt.style.use("ggplot")
plt.figure()
plt.plot(N, history.history["loss"], label="train_loss")
plt.plot(N, history.history["val_loss"], label="val_loss")
plt.plot(N, history.history["accuracy"], label="train_acc")
plt.plot(N, history.history["val_accuracy"], label="val_acc")
plt.title("Aug Training Loss and Accuracy")
plt.xlabel("Epoch #")
plt.ylabel("Loss/Accuracy")
plt.legend(loc='upper right')  # legend显示位置
plt.show()

输出结果:

13.评估您的模型在验证数据集的性能:

python 复制代码
test_loss, test_acc = model.evaluate(val_ds, verbose=2)
print(test_loss, test_acc)

输出结果:

14.输出在验证集上的预测结果和真实值的对比:

python 复制代码
#  优化2 输出在验证集上的预测结果和真实值的对比
pre = model.predict(val_ds)
for images, labels in val_ds.take(1):
    for i in range(4):
        ax = plt.subplot(1, 4, i + 1)
        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        plt.xticks([])
        plt.yticks([])
        # plt.xlabel('pre: ' + class_names[np.argmax(pre[i])] + ' real: ' + class_names[labels[i]])
        plt.xlabel('pre: ' + class_names[np.argmax(pre[i])])
        print('pre: ' + str(class_names[np.argmax(pre[i])]) + ' real: ' + class_names[labels[i]])
plt.show()

输出结果:

15.输出可视化报表:

python 复制代码
print(labels_test)
print(labels)
print(pre)
print(class_names)
from sklearn.metrics import classification_report
# 优化1 输出可视化报表
print(classification_report(labels_test,
                          pre.argmax(axis=1),
target_names=class_names))

输出结果:

相关推荐
数据皮皮侠2 小时前
区县政府税务数据分析能力建设DID(2007-2025)
大数据·数据库·人工智能·信息可视化·微信开放平台
极小狐3 小时前
比 Cursor 更丝滑的 AI DevOps 编程智能体 - CodeRider-Kilo 正式发布!
运维·人工智能·devops
半臻(火白)4 小时前
Prompt-R1:重新定义AI交互的「精准沟通」范式
人工智能
菠菠萝宝4 小时前
【AI应用探索】-10- Cursor实战:小程序&APP - 下
人工智能·小程序·kotlin·notepad++·ai编程·cursor
连线Insight4 小时前
架构调整后,蚂蚁继续死磕医疗健康“硬骨头”
人工智能
小和尚同志4 小时前
十月份 AI Coding 实践!Qoder、CC、Codex 还是 iflow?
人工智能·aigc
keke.shengfengpolang4 小时前
中专旅游管理专业职业发展指南:从入门到精通的成长路径
人工智能·旅游
Danceful_YJ5 小时前
35.微调BERT
人工智能·深度学习·bert
ZPC82105 小时前
FPGA 部署ONNX
人工智能·python·算法·机器人
愿没error的x5 小时前
深度学习基础知识总结(一):深入理解卷积(Convolution)
人工智能·深度学习