推导点到直线(平面)的距离公式

本文利用了点和直线、平面的齐次坐标表示方法,来推导2维点到直线距离,3维点到平面距离的公式。用齐次坐标表示方法推导比较简洁。

2维点到直线

令2维点: A ( x 0 , y 0 , 1 ) (x_0,y_0, 1) (x0,y0,1), 2维直线方程: a x + b y + c = 0 ax+by+c=0 ax+by+c=0

2维直线 ( a , b , c ) (a,b,c) (a,b,c)中 a 2 + b 2 = 1 a^2+b^2=1 a2+b2=1

直线上的任意点: B ( x ′ , y ′ , 1 ) (x',y', 1) (x′,y′,1)

那么向量 A B → \overrightarrow{AB} AB 与直线法向量 ( a , b ) (a,b) (a,b)的点积就是A到直线的距离
d = ∣ ( x 0 − x ′ ) ∗ a + ( y 0 − y ′ ) ∗ b ∣ = ∣ x 0 ∗ a + y 0 ∗ b + c ∣ d=|(x_0-x')*a+(y_0-y')*b| =|x_0*a+y_0*b+c| d=∣(x0−x′)∗a+(y0−y′)∗b∣=∣x0∗a+y0∗b+c∣

3维点到平面

推导跟2维一样,A ( x 0 , y 0 , z 0 , 1 ) (x_0,y_0,z_0,1) (x0,y0,z0,1), 3维平面 a x + b y + c z + d = 0 ax+by+cz+d=0 ax+by+cz+d=0
a 2 + b 2 + c 2 = 1 a^2+b^2+c^2=1 a2+b2+c2=1

B ( x ′ , y ′ , z ′ , 1 ) (x',y',z',1) (x′,y′,z′,1)
d = ∣ ( x 0 − x ′ ) ∗ a + ( y 0 − y ′ ) ∗ b + ( z 0 − z ′ ) ∗ c ∣ = ∣ x 0 ∗ a + y 0 ∗ b + z 0 ∗ c + d ∣ d=|(x_0-x')*a+(y_0-y')*b+(z_0-z')*c| =|x_0*a+y_0*b+z_0*c+d| d=∣(x0−x′)∗a+(y0−y′)∗b+(z0−z′)∗c∣=∣x0∗a+y0∗b+z0∗c+d∣

相关推荐
haing201931 分钟前
已知两个平面点的坐标、切线方向、曲率,使用牛顿迭代法构造三阶 Bézier 曲线的方法
平面·牛顿迭代·三阶bezier
君名余曰正则4 小时前
机器学习实操项目01——Numpy入门(基本操作、数组形状操作、复制与试图、多种索引技巧、线性代数)
线性代数·机器学习·numpy
点云SLAM5 小时前
四元数 (Quaternion)与李群SE(3)知识点(1)
线性代数·slam·四元数·旋转矩阵·位姿表示·李群se(3)·四元数插值
阿巴Jun17 小时前
【数学】线性代数知识点总结
笔记·线性代数·矩阵
scx_link1 天前
数学知识--行向量与矩阵相乘,和矩阵与行向量相乘的区别
线性代数·矩阵
EQUINOX11 天前
矩阵的对称,反对称分解
线性代数·矩阵
郝学胜-神的一滴1 天前
基于OpenGL封装摄像机类:视图矩阵与透视矩阵的实现
c++·qt·线性代数·矩阵·游戏引擎·图形渲染
十子木1 天前
线性方程求解器的矩阵分裂
线性代数·矩阵
人机与认知实验室2 天前
人机环境系统智能矩阵理论
线性代数·矩阵
haing20194 天前
两条平面直线之间通过三次多项式曲线进行过渡的方法介绍
平面·g1连续过渡·平面直线