推导点到直线(平面)的距离公式

本文利用了点和直线、平面的齐次坐标表示方法,来推导2维点到直线距离,3维点到平面距离的公式。用齐次坐标表示方法推导比较简洁。

2维点到直线

令2维点: A ( x 0 , y 0 , 1 ) (x_0,y_0, 1) (x0,y0,1), 2维直线方程: a x + b y + c = 0 ax+by+c=0 ax+by+c=0

2维直线 ( a , b , c ) (a,b,c) (a,b,c)中 a 2 + b 2 = 1 a^2+b^2=1 a2+b2=1

直线上的任意点: B ( x ′ , y ′ , 1 ) (x',y', 1) (x′,y′,1)

那么向量 A B → \overrightarrow{AB} AB 与直线法向量 ( a , b ) (a,b) (a,b)的点积就是A到直线的距离
d = ∣ ( x 0 − x ′ ) ∗ a + ( y 0 − y ′ ) ∗ b ∣ = ∣ x 0 ∗ a + y 0 ∗ b + c ∣ d=|(x_0-x')*a+(y_0-y')*b| =|x_0*a+y_0*b+c| d=∣(x0−x′)∗a+(y0−y′)∗b∣=∣x0∗a+y0∗b+c∣

3维点到平面

推导跟2维一样,A ( x 0 , y 0 , z 0 , 1 ) (x_0,y_0,z_0,1) (x0,y0,z0,1), 3维平面 a x + b y + c z + d = 0 ax+by+cz+d=0 ax+by+cz+d=0
a 2 + b 2 + c 2 = 1 a^2+b^2+c^2=1 a2+b2+c2=1

B ( x ′ , y ′ , z ′ , 1 ) (x',y',z',1) (x′,y′,z′,1)
d = ∣ ( x 0 − x ′ ) ∗ a + ( y 0 − y ′ ) ∗ b + ( z 0 − z ′ ) ∗ c ∣ = ∣ x 0 ∗ a + y 0 ∗ b + z 0 ∗ c + d ∣ d=|(x_0-x')*a+(y_0-y')*b+(z_0-z')*c| =|x_0*a+y_0*b+z_0*c+d| d=∣(x0−x′)∗a+(y0−y′)∗b+(z0−z′)∗c∣=∣x0∗a+y0∗b+z0∗c+d∣

相关推荐
点云SLAM6 小时前
Eigen中Dense 模块简要介绍和实战应用示例(最小二乘拟合直线、协方差矩阵计算和稀疏求解等)
线性代数·算法·机器学习·矩阵·机器人/slam·密集矩阵与向量·eigen库
酌沧1 天前
大模型的底层运算线性代数
线性代数
老歌老听老掉牙2 天前
SymPy 矩阵到 NumPy 数组的全面转换指南
python·线性代数·矩阵·numpy·sympy
易木木木响叮当4 天前
有限元方法中的数值技术:行列式、求逆、矩阵方程
线性代数·矩阵
厦门辰迈智慧科技有限公司6 天前
现代化水库运行管理矩阵建设的要点
运维·网络·物联网·线性代数·安全·矩阵·监测
文火冰糖的硅基工坊6 天前
[激光原理与应用-261]:理论 - 几何光学 - 平面不过是半径无限大的球面
平面
{⌐■_■}7 天前
【MongoDB】简单理解聚合操作,案例解析
数据库·线性代数·mongodb
盛世隐者9 天前
【线性代数】线性方程组与矩阵——行列式
线性代数
盛世隐者9 天前
【线性代数】线性方程组与矩阵——(1)线性方程组与矩阵初步
线性代数
盛世隐者10 天前
【线性代数】线性方程组与矩阵——(3)线性方程组解的结构
线性代数