推导点到直线(平面)的距离公式

本文利用了点和直线、平面的齐次坐标表示方法,来推导2维点到直线距离,3维点到平面距离的公式。用齐次坐标表示方法推导比较简洁。

2维点到直线

令2维点: A ( x 0 , y 0 , 1 ) (x_0,y_0, 1) (x0,y0,1), 2维直线方程: a x + b y + c = 0 ax+by+c=0 ax+by+c=0

2维直线 ( a , b , c ) (a,b,c) (a,b,c)中 a 2 + b 2 = 1 a^2+b^2=1 a2+b2=1

直线上的任意点: B ( x ′ , y ′ , 1 ) (x',y', 1) (x′,y′,1)

那么向量 A B → \overrightarrow{AB} AB 与直线法向量 ( a , b ) (a,b) (a,b)的点积就是A到直线的距离
d = ∣ ( x 0 − x ′ ) ∗ a + ( y 0 − y ′ ) ∗ b ∣ = ∣ x 0 ∗ a + y 0 ∗ b + c ∣ d=|(x_0-x')*a+(y_0-y')*b| =|x_0*a+y_0*b+c| d=∣(x0−x′)∗a+(y0−y′)∗b∣=∣x0∗a+y0∗b+c∣

3维点到平面

推导跟2维一样,A ( x 0 , y 0 , z 0 , 1 ) (x_0,y_0,z_0,1) (x0,y0,z0,1), 3维平面 a x + b y + c z + d = 0 ax+by+cz+d=0 ax+by+cz+d=0
a 2 + b 2 + c 2 = 1 a^2+b^2+c^2=1 a2+b2+c2=1

B ( x ′ , y ′ , z ′ , 1 ) (x',y',z',1) (x′,y′,z′,1)
d = ∣ ( x 0 − x ′ ) ∗ a + ( y 0 − y ′ ) ∗ b + ( z 0 − z ′ ) ∗ c ∣ = ∣ x 0 ∗ a + y 0 ∗ b + z 0 ∗ c + d ∣ d=|(x_0-x')*a+(y_0-y')*b+(z_0-z')*c| =|x_0*a+y_0*b+z_0*c+d| d=∣(x0−x′)∗a+(y0−y′)∗b+(z0−z′)∗c∣=∣x0∗a+y0∗b+z0∗c+d∣

相关推荐
别NULL12 小时前
《现代网络技术》读书笔记:SDN数据平面和OpenFlow
linux·网络·平面·sdn
denghai邓海1 天前
基于势能的平面运动模拟
python·平面·状态模式
君臣Andy2 天前
【矩阵的大小和方向的分解】
线性代数·矩阵
勤劳的进取家2 天前
利用矩阵函数的导数公式求解一阶常系数微分方程组的解
线性代数
sz66cm2 天前
数学基础 -- 线性代数之线性无关
人工智能·线性代数·机器学习
青瓷看世界2 天前
华为HarmonyOS借助AR引擎帮助应用实现虚拟与现实交互的能力4-检测环境中的平面
平面·ar·harmonyos·虚拟现实
和光同尘 、Y_____2 天前
OCC 拟合的平面转换为有界平面
平面
herobrineAC2 天前
线代的几何意义(一)——向量,坐标,矩阵
线性代数·矩阵
Ricciflows2 天前
分析学大师Elias M. Stein的分析系列教材
线性代数·数学建模·矩阵·概率论·抽象代数·拓扑学·傅立叶分析
余~185381628003 天前
矩阵NFC碰一碰发视频源码开发技术解析,支持OEM
大数据·人工智能·线性代数·矩阵·音视频