推导点到直线(平面)的距离公式

本文利用了点和直线、平面的齐次坐标表示方法,来推导2维点到直线距离,3维点到平面距离的公式。用齐次坐标表示方法推导比较简洁。

2维点到直线

令2维点: A ( x 0 , y 0 , 1 ) (x_0,y_0, 1) (x0,y0,1), 2维直线方程: a x + b y + c = 0 ax+by+c=0 ax+by+c=0

2维直线 ( a , b , c ) (a,b,c) (a,b,c)中 a 2 + b 2 = 1 a^2+b^2=1 a2+b2=1

直线上的任意点: B ( x ′ , y ′ , 1 ) (x',y', 1) (x′,y′,1)

那么向量 A B → \overrightarrow{AB} AB 与直线法向量 ( a , b ) (a,b) (a,b)的点积就是A到直线的距离
d = ∣ ( x 0 − x ′ ) ∗ a + ( y 0 − y ′ ) ∗ b ∣ = ∣ x 0 ∗ a + y 0 ∗ b + c ∣ d=|(x_0-x')*a+(y_0-y')*b| =|x_0*a+y_0*b+c| d=∣(x0−x′)∗a+(y0−y′)∗b∣=∣x0∗a+y0∗b+c∣

3维点到平面

推导跟2维一样,A ( x 0 , y 0 , z 0 , 1 ) (x_0,y_0,z_0,1) (x0,y0,z0,1), 3维平面 a x + b y + c z + d = 0 ax+by+cz+d=0 ax+by+cz+d=0
a 2 + b 2 + c 2 = 1 a^2+b^2+c^2=1 a2+b2+c2=1

B ( x ′ , y ′ , z ′ , 1 ) (x',y',z',1) (x′,y′,z′,1)
d = ∣ ( x 0 − x ′ ) ∗ a + ( y 0 − y ′ ) ∗ b + ( z 0 − z ′ ) ∗ c ∣ = ∣ x 0 ∗ a + y 0 ∗ b + z 0 ∗ c + d ∣ d=|(x_0-x')*a+(y_0-y')*b+(z_0-z')*c| =|x_0*a+y_0*b+z_0*c+d| d=∣(x0−x′)∗a+(y0−y′)∗b+(z0−z′)∗c∣=∣x0∗a+y0∗b+z0∗c+d∣

相关推荐
郝学胜-神的一滴15 小时前
Cesium绘制线:从基础到高级技巧
前端·javascript·程序人生·线性代数·算法·矩阵·图形渲染
夜星辰202317 小时前
RK3568 MIPI 摄像头驱动的 V4L2 多平面视频格式解析
平面·摄像头格式·nv12
前端小L18 小时前
动态规划的“升维”之技:二维前缀和,让矩阵查询“降维打击”
线性代数·矩阵
HVACoder2 天前
复习下线性代数,使用向量平移拼接两段线
c++·线性代数·算法
应用市场2 天前
楼灯光矩阵显示系统:从理论到实践的完整技术方案
线性代数·矩阵·wpf
然后,是第八天2 天前
【机械臂运动学基础】变换矩阵
线性代数·矩阵
通信小呆呆2 天前
以矩阵视角统一理解:外积、Kronecker 积与 Khatri–Rao 积(含MATLAB可视化)
线性代数·算法·matlab·矩阵·信号处理
前端小L3 天前
动态规划的“降维”艺术:二维矩阵中的建筑奇迹——最大矩形
线性代数·矩阵
张晓~183399481214 天前
碰一碰发抖音源码技术搭建部署方案
线性代数·算法·microsoft·矩阵·html5
dxnb224 天前
Datawhale25年10月组队学习:math for AI+Task3线性代数(下)
人工智能·学习·线性代数