百度ERNIE系列预训练语言模型浅析(4)-总结篇

总结:ERNIE 3.0与ERNIE 2.0比较

(1)相同点:

采用连续学习

采用了多个语义层级的预训练任务

(2)不同点:

ERNIE 3.0 Transformer-XL Encoder(自回归+自编码), ERNIE 2.0 Transformer Encoder(自编码)

预训练任务的细微差别,ERNIE3.0里增加的知识图谱

ERNIE 3.0考虑到不同的预训练任务具有不同的高层语义,而共享着底层的语义(比如语法,词法等),为了充分地利用数据并且实现高效预训练,ERNIE 3.0中对采用了多任务训练中的常见做法,将不同的特征层分为了通用语义层(Universal Representation)和任务相关层(Task-specific Representation)。

参考

相关推荐
ssshooter5 分钟前
MCP 服务 Streamable HTTP 和 SSE 的区别
人工智能·面试·程序员
rengang6620 分钟前
软件工程新纪元:AI协同编程架构师的修养与使命
人工智能·软件工程·ai编程·ai协同编程架构师
IT_陈寒32 分钟前
Python+AI实战:用LangChain构建智能问答系统的5个核心技巧
前端·人工智能·后端
亚马逊云开发者1 小时前
Amazon Bedrock AgentCore Memory:亚马逊云科技的托管记忆解决方案
人工智能
言之。1 小时前
Chroma 开源的 AI 应用搜索与检索数据库(即向量数据库)
数据库·人工智能·开源
tomlone1 小时前
《AI的未来:从“召唤幽灵”到学会反思》
人工智能
编码浪子1 小时前
对LlamaFactory的一点见解
人工智能·机器学习·数据挖掘
长桥夜波1 小时前
【第十八周】机器学习笔记07
人工智能·笔记·机器学习
luoganttcc2 小时前
是凯恩斯主义主导 西方的经济决策吗
大数据·人工智能·金融·哲学
好奇龙猫2 小时前
AI学习:SPIN -win-安装SPIN-工具过程 SPIN win 电脑安装=accoda 环境-第五篇:代码修复]
人工智能·学习