百度ERNIE系列预训练语言模型浅析(4)-总结篇

总结:ERNIE 3.0与ERNIE 2.0比较

(1)相同点:

采用连续学习

采用了多个语义层级的预训练任务

(2)不同点:

ERNIE 3.0 Transformer-XL Encoder(自回归+自编码), ERNIE 2.0 Transformer Encoder(自编码)

预训练任务的细微差别,ERNIE3.0里增加的知识图谱

ERNIE 3.0考虑到不同的预训练任务具有不同的高层语义,而共享着底层的语义(比如语法,词法等),为了充分地利用数据并且实现高效预训练,ERNIE 3.0中对采用了多任务训练中的常见做法,将不同的特征层分为了通用语义层(Universal Representation)和任务相关层(Task-specific Representation)。

参考

相关推荐
正儿八经的数字经14 分钟前
人工智能100问☞第24问:什么是生成对抗网络(GAN)?
人工智能·神经网络·生成对抗网络
wei_shuo1 小时前
GpuGeek 实操指南:So-VITS-SVC 语音合成与 Stable Diffusion 文生图双模型搭建,融合即梦 AI 的深度实践
人工智能·stable diffusion·gpu算力·gpuseek
x-cmd1 小时前
[250516] OpenAI 升级 ChatGPT:GPT-4.1 及 Mini 版上线!
人工智能·chatgpt·openai·gpt-4.1
2201_754918412 小时前
OpenCV 背景建模详解:从原理到实战
人工智能·opencv·计算机视觉
CopyLower2 小时前
苹果计划将AI搜索集成至Safari:谷歌搜索下降引发的市场变革
前端·人工智能·safari
wd2099882 小时前
2025年Ai写PPT工具推荐,这5款Ai工具可以一键生成专业PPT
人工智能
张飞飞飞飞飞2 小时前
语音识别——声纹识别
人工智能·语音识别
archko3 小时前
语音识别-3,添加ai问答
android·人工智能
Bowen_CV5 小时前
AI 赋能防艾宣传:从创意到实践,我的 IP 形象设计之旅
人工智能·3d建模·豆包·造好物·腾讯混元 3d