数据可视化每周挑战——中国高校数据分析

最近要高考了,这里祝大家金榜题名,旗开得胜。

这是数据集,如果有需要的,可以私信我。

复制代码
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from pyecharts.charts import Line
from pyecharts.charts import Bar
from pyecharts.charts import PictorialBar
from pyecharts.charts import Map
from pyecharts.charts import Pie
from pyecharts.charts import Grid
from pyecharts.charts import WordCloud
from pyecharts import options as opts

plt.rcParams['font.family'] = ['sans-serif']
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

老规矩第一步将我们需要用到的库先导入,其次,我们可以将绘图时的字体设置好,

复制代码
data = pd.read_excel("D:\\每周挑战\\中国大学综合排名2023.xlsx")
data.head()

导入数据

复制代码
# data.info()
# 可以看出办学层次缺失数据集太多了,因此我们将其删除
data = data.drop("层次",axis=1)
data.info()
复制代码
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 590 entries, 0 to 589
Data columns (total 16 columns):
 #   Column   Non-Null Count  Dtype  
---  ------   --------------  -----  
 0   排名       590 non-null    int64  
 1   学校名称     590 non-null    object 
 2   英文名称     590 non-null    object 
 3   类型       590 non-null    object 
 4   地区       590 non-null    object 
 5   评分       590 non-null    float64
 6   办学层次     590 non-null    float64
 7   学科水平     590 non-null    float64
 8   办学资源     590 non-null    float64
 9   师资规模与结构  590 non-null    float64
 10  人才培养     590 non-null    float64
 11  科学研究     590 non-null    float64
 12  服务社会     590 non-null    float64
 13  高端人才     590 non-null    float64
 14  重大项目与成果  590 non-null    float64
 15  国际竞争力    590 non-null    float64
dtypes: float64(11), int64(1), object(4)
memory usage: 73.9+ KB

首先,我们先对学校的分布进行分析,这里我们直接使用Map来绘图

复制代码
school_data = data['地区'].value_counts().reset_index()
x = school_data['index'].tolist()
y = school_data['地区'].tolist()
df = []
for i in zip(x,y):
    df.append(i)

range_colors = ['#228be6','#1864ab','#8BC34A','#FFCA28','#D32F2F','#1DFFF5','#FF850E']
schoolmap = (
    Map().add("",df,"china",is_map_symbol_show=False,
             label_opts=opts.LabelOpts(is_show=False)
             )
         .set_global_opts(
             title_opts=opts.TitleOpts(
                  title="2023年各个地区高校数量分布情况",
                  pos_top='1%',
                  pos_left='center'
              ),
              legend_opts=opts.LegendOpts(is_show=False),
              visualmap_opts = opts.VisualMapOpts(
                  max_=40,split_number=8,is_piecewise=True,range_color=range_colors,
                  pos_bottom='5%',pos_left='10%'
              )
         )
)
# schoolmap.render_notebook()
复制代码
df = data['类型'].value_counts()
data_pair = [(index, value) for index, value in df.items()]
pie = (
    Pie(init_opts=opts.InitOpts(width='1000px',height='800px'))
    .add("",data_pair,radius=['30%','50%'])
    .set_global_opts(
        title_opts=opts.TitleOpts(
            title="各个类型高校的占比",
            pos_top="1%",
            pos_left='center',
            title_textstyle_opts=opts.TextStyleOpts(color='#1DFFF5',font_size=20)
        ),
        visualmap_opts=opts.VisualMapOpts(
            is_show=True,
            max_=200,
            range_color=['#228be6','#1864ab','#8BC34A','#1DFFF5','#FF850E']
        ),
        legend_opts=opts.LegendOpts(is_show=False)
    )
)
pie.render_notebook()
复制代码
x_data = data.columns[6:].tolist()

line = (
    Line(init_opts = opts.InitOpts(width='1000px',height='800px'))
    .add_xaxis(x_data)
)

for i in range(len(data)):
    line.add_yaxis(data.iloc[i,:].values[1], data.iloc[i,:].values[7:])

line.set_global_opts(
    legend_opts=opts.LegendOpts(is_show=False, pos_top='15%', pos_right='20%', orient='vertical'),
    title_opts=opts.TitleOpts(
        title='中国高校各项评分',
        pos_top='1%',
        pos_left="1%",
        title_textstyle_opts=opts.TextStyleOpts(color='#fff200', font_size=20)
    ),
)
line.render_notebook()

这个图像下载不下来,因此我这里截屏了。大家如果想看自己学校的,可以修改上面的代码 。(由于该数据集只有前100为学校有具体数据,其他学校无数据,因此这里只能改99之前的)

复制代码
x_data = data.columns[6:].tolist()

line = (
    Line(init_opts = opts.InitOpts(width='1000px',height='800px'))
    .add_xaxis(x_data)
)

line.add_yaxis(data.iloc[0(数据集中你学校的位置比如清华学校是0这里就写0),:].values[1], data.iloc[0(数据集中你学校的位置比如清华学校是0这里就写0),:].values[7:])

line.set_global_opts(
    legend_opts=opts.LegendOpts(is_show=False, pos_top='15%', pos_right='20%', orient='vertical'),
    title_opts=opts.TitleOpts(
        title='中国高校各项评分',
        pos_top='1%',
        pos_left="1%",
        title_textstyle_opts=opts.TextStyleOpts(color='#fff200', font_size=20)
    ),
)
line.render_notebook()

我这里改为了50

相关推荐
思通数据34 分钟前
AI全域智能监控系统重构商业清洁管理范式——从被动响应到主动预防的监控效能革命
大数据·人工智能·目标检测·机器学习·计算机视觉·数据挖掘·ocr
大神薯条老师36 分钟前
Python零基础入门到高手8.4节: 元组与列表的区别
开发语言·爬虫·python·深度学习·机器学习·数据分析
lilye661 小时前
精益数据分析(55/126):双边市场模式的挑战、策略与创业阶段关联
大数据·人工智能·数据分析
码上地球2 小时前
因子分析基础指南:原理、步骤与地球化学数据分析应用解析
大数据·数据挖掘·数据分析
RE-19012 小时前
PowerBI基础
数据分析·powerbi·思维导图·bi工具·数分工具
lilye666 小时前
精益数据分析(56/126):创业阶段的划分与精益数据分析实践
数据挖掘·数据分析
外星猪猪8 小时前
嵌入式调试新宠!J-Scope:免费+实时数据可视化,让MCU调试效率飙升!
单片机·嵌入式硬件·信息可视化
lilye669 小时前
精益数据分析(62/126):从客户访谈评分到市场规模估算——移情阶段的实战进阶
数据挖掘·数据分析
CodeJourney.10 小时前
ChemBlender:科研绘图创新解决方案
数据库·人工智能·信息可视化·excel
Christo311 小时前
关于在深度聚类中Representation Collapse现象
人工智能·深度学习·算法·机器学习·数据挖掘·embedding·聚类