数据可视化每周挑战——中国高校数据分析

最近要高考了,这里祝大家金榜题名,旗开得胜。

这是数据集,如果有需要的,可以私信我。

复制代码
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from pyecharts.charts import Line
from pyecharts.charts import Bar
from pyecharts.charts import PictorialBar
from pyecharts.charts import Map
from pyecharts.charts import Pie
from pyecharts.charts import Grid
from pyecharts.charts import WordCloud
from pyecharts import options as opts

plt.rcParams['font.family'] = ['sans-serif']
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

老规矩第一步将我们需要用到的库先导入,其次,我们可以将绘图时的字体设置好,

复制代码
data = pd.read_excel("D:\\每周挑战\\中国大学综合排名2023.xlsx")
data.head()

导入数据

复制代码
# data.info()
# 可以看出办学层次缺失数据集太多了,因此我们将其删除
data = data.drop("层次",axis=1)
data.info()
复制代码
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 590 entries, 0 to 589
Data columns (total 16 columns):
 #   Column   Non-Null Count  Dtype  
---  ------   --------------  -----  
 0   排名       590 non-null    int64  
 1   学校名称     590 non-null    object 
 2   英文名称     590 non-null    object 
 3   类型       590 non-null    object 
 4   地区       590 non-null    object 
 5   评分       590 non-null    float64
 6   办学层次     590 non-null    float64
 7   学科水平     590 non-null    float64
 8   办学资源     590 non-null    float64
 9   师资规模与结构  590 non-null    float64
 10  人才培养     590 non-null    float64
 11  科学研究     590 non-null    float64
 12  服务社会     590 non-null    float64
 13  高端人才     590 non-null    float64
 14  重大项目与成果  590 non-null    float64
 15  国际竞争力    590 non-null    float64
dtypes: float64(11), int64(1), object(4)
memory usage: 73.9+ KB

首先,我们先对学校的分布进行分析,这里我们直接使用Map来绘图

复制代码
school_data = data['地区'].value_counts().reset_index()
x = school_data['index'].tolist()
y = school_data['地区'].tolist()
df = []
for i in zip(x,y):
    df.append(i)

range_colors = ['#228be6','#1864ab','#8BC34A','#FFCA28','#D32F2F','#1DFFF5','#FF850E']
schoolmap = (
    Map().add("",df,"china",is_map_symbol_show=False,
             label_opts=opts.LabelOpts(is_show=False)
             )
         .set_global_opts(
             title_opts=opts.TitleOpts(
                  title="2023年各个地区高校数量分布情况",
                  pos_top='1%',
                  pos_left='center'
              ),
              legend_opts=opts.LegendOpts(is_show=False),
              visualmap_opts = opts.VisualMapOpts(
                  max_=40,split_number=8,is_piecewise=True,range_color=range_colors,
                  pos_bottom='5%',pos_left='10%'
              )
         )
)
# schoolmap.render_notebook()
复制代码
df = data['类型'].value_counts()
data_pair = [(index, value) for index, value in df.items()]
pie = (
    Pie(init_opts=opts.InitOpts(width='1000px',height='800px'))
    .add("",data_pair,radius=['30%','50%'])
    .set_global_opts(
        title_opts=opts.TitleOpts(
            title="各个类型高校的占比",
            pos_top="1%",
            pos_left='center',
            title_textstyle_opts=opts.TextStyleOpts(color='#1DFFF5',font_size=20)
        ),
        visualmap_opts=opts.VisualMapOpts(
            is_show=True,
            max_=200,
            range_color=['#228be6','#1864ab','#8BC34A','#1DFFF5','#FF850E']
        ),
        legend_opts=opts.LegendOpts(is_show=False)
    )
)
pie.render_notebook()
复制代码
x_data = data.columns[6:].tolist()

line = (
    Line(init_opts = opts.InitOpts(width='1000px',height='800px'))
    .add_xaxis(x_data)
)

for i in range(len(data)):
    line.add_yaxis(data.iloc[i,:].values[1], data.iloc[i,:].values[7:])

line.set_global_opts(
    legend_opts=opts.LegendOpts(is_show=False, pos_top='15%', pos_right='20%', orient='vertical'),
    title_opts=opts.TitleOpts(
        title='中国高校各项评分',
        pos_top='1%',
        pos_left="1%",
        title_textstyle_opts=opts.TextStyleOpts(color='#fff200', font_size=20)
    ),
)
line.render_notebook()

这个图像下载不下来,因此我这里截屏了。大家如果想看自己学校的,可以修改上面的代码 。(由于该数据集只有前100为学校有具体数据,其他学校无数据,因此这里只能改99之前的)

复制代码
x_data = data.columns[6:].tolist()

line = (
    Line(init_opts = opts.InitOpts(width='1000px',height='800px'))
    .add_xaxis(x_data)
)

line.add_yaxis(data.iloc[0(数据集中你学校的位置比如清华学校是0这里就写0),:].values[1], data.iloc[0(数据集中你学校的位置比如清华学校是0这里就写0),:].values[7:])

line.set_global_opts(
    legend_opts=opts.LegendOpts(is_show=False, pos_top='15%', pos_right='20%', orient='vertical'),
    title_opts=opts.TitleOpts(
        title='中国高校各项评分',
        pos_top='1%',
        pos_left="1%",
        title_textstyle_opts=opts.TextStyleOpts(color='#fff200', font_size=20)
    ),
)
line.render_notebook()

我这里改为了50

相关推荐
爱奇艺技术产品团队4 小时前
助力用户增长数据可视化分析:天玑个性化数据大盘
信息可视化·数据挖掘·数据分析
牙牙要健康6 小时前
【图像分类】【深度学习】图像分类评价指标
深度学习·分类·数据挖掘
穆易青8 小时前
2025.04.13【Density 2d】| 基因表达数据可视化
信息可视化
南方以南_9 小时前
程序员/运维绘图工具---Mermaid
信息可视化
Dr.Water9 小时前
从0到1构建企业级消息系统服务体系(一):产品架构视角下的高并发设计与动态响应能力建设
信息可视化·架构·产品经理
想你依然心痛10 小时前
Spark大数据分析与实战笔记(第四章 Spark SQL结构化数据文件处理-04)
笔记·数据分析·spark
用户Taobaoapi201410 小时前
深入研究:微店商品列表API详解
大数据·爬虫·数据挖掘
Miu_数分版12 小时前
PowerBi中AVERAGEX和AVERAGE有什么不同?
数据分析
DragonnAi16 小时前
猫咪如厕检测与分类识别系统系列【六】分类模型训练+混合检测分类+未知目标自动更新
人工智能·python·yolo·目标检测·计算机视觉·分类·数据挖掘
胖子君16 小时前
BI工具革命派vs传统强者:DataFocus.ai与Tableau的终极对决
数据分析