数据可视化每周挑战——中国高校数据分析

最近要高考了,这里祝大家金榜题名,旗开得胜。

这是数据集,如果有需要的,可以私信我。

复制代码
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from pyecharts.charts import Line
from pyecharts.charts import Bar
from pyecharts.charts import PictorialBar
from pyecharts.charts import Map
from pyecharts.charts import Pie
from pyecharts.charts import Grid
from pyecharts.charts import WordCloud
from pyecharts import options as opts

plt.rcParams['font.family'] = ['sans-serif']
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

老规矩第一步将我们需要用到的库先导入,其次,我们可以将绘图时的字体设置好,

复制代码
data = pd.read_excel("D:\\每周挑战\\中国大学综合排名2023.xlsx")
data.head()

导入数据

复制代码
# data.info()
# 可以看出办学层次缺失数据集太多了,因此我们将其删除
data = data.drop("层次",axis=1)
data.info()
复制代码
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 590 entries, 0 to 589
Data columns (total 16 columns):
 #   Column   Non-Null Count  Dtype  
---  ------   --------------  -----  
 0   排名       590 non-null    int64  
 1   学校名称     590 non-null    object 
 2   英文名称     590 non-null    object 
 3   类型       590 non-null    object 
 4   地区       590 non-null    object 
 5   评分       590 non-null    float64
 6   办学层次     590 non-null    float64
 7   学科水平     590 non-null    float64
 8   办学资源     590 non-null    float64
 9   师资规模与结构  590 non-null    float64
 10  人才培养     590 non-null    float64
 11  科学研究     590 non-null    float64
 12  服务社会     590 non-null    float64
 13  高端人才     590 non-null    float64
 14  重大项目与成果  590 non-null    float64
 15  国际竞争力    590 non-null    float64
dtypes: float64(11), int64(1), object(4)
memory usage: 73.9+ KB

首先,我们先对学校的分布进行分析,这里我们直接使用Map来绘图

复制代码
school_data = data['地区'].value_counts().reset_index()
x = school_data['index'].tolist()
y = school_data['地区'].tolist()
df = []
for i in zip(x,y):
    df.append(i)

range_colors = ['#228be6','#1864ab','#8BC34A','#FFCA28','#D32F2F','#1DFFF5','#FF850E']
schoolmap = (
    Map().add("",df,"china",is_map_symbol_show=False,
             label_opts=opts.LabelOpts(is_show=False)
             )
         .set_global_opts(
             title_opts=opts.TitleOpts(
                  title="2023年各个地区高校数量分布情况",
                  pos_top='1%',
                  pos_left='center'
              ),
              legend_opts=opts.LegendOpts(is_show=False),
              visualmap_opts = opts.VisualMapOpts(
                  max_=40,split_number=8,is_piecewise=True,range_color=range_colors,
                  pos_bottom='5%',pos_left='10%'
              )
         )
)
# schoolmap.render_notebook()
复制代码
df = data['类型'].value_counts()
data_pair = [(index, value) for index, value in df.items()]
pie = (
    Pie(init_opts=opts.InitOpts(width='1000px',height='800px'))
    .add("",data_pair,radius=['30%','50%'])
    .set_global_opts(
        title_opts=opts.TitleOpts(
            title="各个类型高校的占比",
            pos_top="1%",
            pos_left='center',
            title_textstyle_opts=opts.TextStyleOpts(color='#1DFFF5',font_size=20)
        ),
        visualmap_opts=opts.VisualMapOpts(
            is_show=True,
            max_=200,
            range_color=['#228be6','#1864ab','#8BC34A','#1DFFF5','#FF850E']
        ),
        legend_opts=opts.LegendOpts(is_show=False)
    )
)
pie.render_notebook()
复制代码
x_data = data.columns[6:].tolist()

line = (
    Line(init_opts = opts.InitOpts(width='1000px',height='800px'))
    .add_xaxis(x_data)
)

for i in range(len(data)):
    line.add_yaxis(data.iloc[i,:].values[1], data.iloc[i,:].values[7:])

line.set_global_opts(
    legend_opts=opts.LegendOpts(is_show=False, pos_top='15%', pos_right='20%', orient='vertical'),
    title_opts=opts.TitleOpts(
        title='中国高校各项评分',
        pos_top='1%',
        pos_left="1%",
        title_textstyle_opts=opts.TextStyleOpts(color='#fff200', font_size=20)
    ),
)
line.render_notebook()

这个图像下载不下来,因此我这里截屏了。大家如果想看自己学校的,可以修改上面的代码 。(由于该数据集只有前100为学校有具体数据,其他学校无数据,因此这里只能改99之前的)

复制代码
x_data = data.columns[6:].tolist()

line = (
    Line(init_opts = opts.InitOpts(width='1000px',height='800px'))
    .add_xaxis(x_data)
)

line.add_yaxis(data.iloc[0(数据集中你学校的位置比如清华学校是0这里就写0),:].values[1], data.iloc[0(数据集中你学校的位置比如清华学校是0这里就写0),:].values[7:])

line.set_global_opts(
    legend_opts=opts.LegendOpts(is_show=False, pos_top='15%', pos_right='20%', orient='vertical'),
    title_opts=opts.TitleOpts(
        title='中国高校各项评分',
        pos_top='1%',
        pos_left="1%",
        title_textstyle_opts=opts.TextStyleOpts(color='#fff200', font_size=20)
    ),
)
line.render_notebook()

我这里改为了50

相关推荐
2501_943695331 天前
大专大数据管理与应用专业,CDA考试的难点在哪里?
信息可视化
毕设源码-郭学长1 天前
【开题答辩全过程】以 基于python的二手房数据分析与可视化为例,包含答辩的问题和答案
开发语言·python·数据分析
2501_943695331 天前
高职大数据与会计专业,考CDA证后能转纯数据分析岗吗?
大数据·数据挖掘·数据分析
那个村的李富贵1 天前
解锁CANN仓库核心能力:50行代码搭建国产化AIGC图片风格迁移神器
mysql·信息可视化·aigc·cann
爱吃泡芙的小白白1 天前
环境数据多维关系探索利器:Pairs Plot 完全指南
python·信息可视化·数据分析·环境领域·pairs plot
莽撞的大地瓜1 天前
洞察,始于一目了然——让舆情数据自己“说话”
大数据·网络·数据分析
AI职业加油站1 天前
职业提升之路:我的大数据分析师学习与备考分享
大数据·人工智能·经验分享·学习·职场和发展·数据分析
AAD555888992 天前
YOLO11-EfficientRepBiPAN载重汽车轮胎热成像检测与分类_3
人工智能·分类·数据挖掘
fanstuck2 天前
从0到提交,如何用 ChatGPT 全流程参与建模比赛的
大数据·数学建模·语言模型·chatgpt·数据挖掘