elasticsearch (dsl)

正排索引 和 倒排索引

正排索引:通过id ,查询content

倒排索引:通过content,查询到符合的 ids

eg:

通过《静夜思》,找到整片文章。

通过"明月",找到《静夜思》 《望月怀古》《关山月》等

get 查询

索引的基本信息:

GET your_index/_mapping //跟看mysql表字段差不多

GET your_index/_alias //查看索引的别名

GET /_cat/health?v //查看集群状态

GET _cat/indices // 查看所有index

GET _cat/shards/your_index //查看指定索引的分片数,每个分片有主(p)副(r)分片

查询索引内容:

match_all:

复制代码
GET /you_index/_search
{
  "query":{
    "match_all": {}
}

bool

bool查询是一个非常强大且常用的复合查询,它允许你组合多个查询条件。bool 查询的核心概念包括以下四种子句:

  1. must : 子句必须匹配文档。类似于 SQL 中的 AND 操作符。
  2. filter : 子句必须匹配文档,但不影响评分。也就是说,它只过滤文档,但不参与评分计算。
  3. should : 子句可以匹配文档。如果在一个 bool 查询中包含了多个 should 子句,则至少一个 should 子句必须匹配文档。类似于 SQL 中的 OR 操作符。
  4. must_not: 子句不能匹配文档。类似于 SQL 中的 NOT 操作符。

eg:

复制代码
GET you_index/_search
{
  "query": {
        "bool": {
            "must": [
                {
                    "bool": {
                        "should": [
                            {
                                "term": {
                                    "name": {
                                        "value": "林俊凯",
                                        "boost": 1
                                    }
                                }
                            },
                            {
                                "term": {
                                    "zh_name": {
                                        "value": "林俊凯",
                                        "boost": 1
                                    }
                                }
                            }
                        ]
                    }
                },
                {
                    "bool": {
                        "should": [
                            {
                                "range": {
                                    "fans_num": {
                                        "gte": "800"
                                    }
                                }
                            },
                            {
                                "terms": {
                                    "tag": [
                                        1010,
                                        1013
                                    ]
                                }
                            }
                        ]
                    }
                }
            ]
        }
    },
    "sort": {
        "_score": {
            "order": "desc"
        },
        "score": {
            "order": "desc"
        }
    }
}

range

复制代码
    "range": {
            "fans_num": {
              "gte": 800,
              "lte":126334
            }
     }

term

terms

prefix

multi_match

multi_phrase

analyzer

mla

standard

keyword

slop

3<80%

相关推荐
LaughingZhu16 分钟前
Product Hunt 每日热榜 | 2026-01-20
数据库·人工智能·经验分享·神经网络·搜索引擎·chatgpt
TOPGUS26 分钟前
谷歌将移除部分搜索功能:面对AI时代的一次功能精简策略
前端·人工智能·搜索引擎·aigc·seo·数字营销
DianSan_ERP1 小时前
从数据到决策:京东接口如何驱动供应链数字化升级
大数据·运维·服务器·数据库·人工智能·性能优化·架构
李尚朋20211 小时前
搜嗖工具箱|小众有个性的趣味网站合集
深度学习·搜索引擎·游戏引擎
min1811234561 小时前
AI从工具向自主决策者的身份转变
大数据·网络·人工智能·架构·流程图
~~李木子~~1 小时前
从“待整理”到“全库清单”:一套可自进化的本地书籍整理脚本实践
大数据·人工智能
人工干智能2 小时前
你知道 Pandas 中 `pd.get_dummies()` 会生成哪些独热的新列么?
大数据·pandas
aitoolhub2 小时前
自媒体视觉物料高效创作新路径:稿定设计如何用AI重构内容生产逻辑
大数据·人工智能·aigc·媒体
Guheyunyi2 小时前
智能巡检:技术融合与系统生成
大数据·人工智能·科技·安全·信息可视化