elasticsearch (dsl)

正排索引 和 倒排索引

正排索引:通过id ,查询content

倒排索引:通过content,查询到符合的 ids

eg:

通过《静夜思》,找到整片文章。

通过"明月",找到《静夜思》 《望月怀古》《关山月》等

get 查询

索引的基本信息:

GET your_index/_mapping //跟看mysql表字段差不多

GET your_index/_alias //查看索引的别名

GET /_cat/health?v //查看集群状态

GET _cat/indices // 查看所有index

GET _cat/shards/your_index //查看指定索引的分片数,每个分片有主(p)副(r)分片

查询索引内容:

match_all:

复制代码
GET /you_index/_search
{
  "query":{
    "match_all": {}
}

bool

bool查询是一个非常强大且常用的复合查询,它允许你组合多个查询条件。bool 查询的核心概念包括以下四种子句:

  1. must : 子句必须匹配文档。类似于 SQL 中的 AND 操作符。
  2. filter : 子句必须匹配文档,但不影响评分。也就是说,它只过滤文档,但不参与评分计算。
  3. should : 子句可以匹配文档。如果在一个 bool 查询中包含了多个 should 子句,则至少一个 should 子句必须匹配文档。类似于 SQL 中的 OR 操作符。
  4. must_not: 子句不能匹配文档。类似于 SQL 中的 NOT 操作符。

eg:

复制代码
GET you_index/_search
{
  "query": {
        "bool": {
            "must": [
                {
                    "bool": {
                        "should": [
                            {
                                "term": {
                                    "name": {
                                        "value": "林俊凯",
                                        "boost": 1
                                    }
                                }
                            },
                            {
                                "term": {
                                    "zh_name": {
                                        "value": "林俊凯",
                                        "boost": 1
                                    }
                                }
                            }
                        ]
                    }
                },
                {
                    "bool": {
                        "should": [
                            {
                                "range": {
                                    "fans_num": {
                                        "gte": "800"
                                    }
                                }
                            },
                            {
                                "terms": {
                                    "tag": [
                                        1010,
                                        1013
                                    ]
                                }
                            }
                        ]
                    }
                }
            ]
        }
    },
    "sort": {
        "_score": {
            "order": "desc"
        },
        "score": {
            "order": "desc"
        }
    }
}

range

复制代码
    "range": {
            "fans_num": {
              "gte": 800,
              "lte":126334
            }
     }

term

terms

prefix

multi_match

multi_phrase

analyzer

mla

standard

keyword

slop

3<80%

相关推荐
jianghx10246 小时前
Docker部署ES,开启安全认证并且设置账号密码(已运行中)
安全·elasticsearch·docker·es账号密码设置
IT小哥哥呀7 小时前
电池制造行业数字化实施
大数据·制造·智能制造·数字化·mom·电池·信息化
Xi xi xi7 小时前
苏州唯理科技近期也正式发布了国内首款神经腕带产品
大数据·人工智能·经验分享·科技
yumgpkpm7 小时前
华为鲲鹏 Aarch64 环境下多 Oracle 、mysql数据库汇聚到Cloudera CDP7.3操作指南
大数据·数据库·mysql·华为·oracle·kafka·cloudera
UMI赋能企业8 小时前
制造业流程自动化提升生产力的全面分析
大数据·人工智能
TDengine (老段)9 小时前
TDengine 数学函数 FLOOR 用户手册
大数据·数据库·物联网·时序数据库·iot·tdengine·涛思数据
派可数据BI可视化11 小时前
商业智能BI 浅谈数据孤岛和数据分析的发展
大数据·数据库·数据仓库·信息可视化·数据挖掘·数据分析
jiedaodezhuti11 小时前
Flink性能调优基石:资源配置与内存优化实践
大数据·flink
阿里云大数据AI技术12 小时前
云栖实录 | AI 搜索智能探索:揭秘如何让搜索“有大脑”
人工智能·搜索引擎
Lx35212 小时前
Flink窗口机制详解:如何处理无界数据流
大数据