elasticsearch (dsl)

正排索引 和 倒排索引

正排索引:通过id ,查询content

倒排索引:通过content,查询到符合的 ids

eg:

通过《静夜思》,找到整片文章。

通过"明月",找到《静夜思》 《望月怀古》《关山月》等

get 查询

索引的基本信息:

GET your_index/_mapping //跟看mysql表字段差不多

GET your_index/_alias //查看索引的别名

GET /_cat/health?v //查看集群状态

GET _cat/indices // 查看所有index

GET _cat/shards/your_index //查看指定索引的分片数,每个分片有主(p)副(r)分片

查询索引内容:

match_all:

复制代码
GET /you_index/_search
{
  "query":{
    "match_all": {}
}

bool

bool查询是一个非常强大且常用的复合查询,它允许你组合多个查询条件。bool 查询的核心概念包括以下四种子句:

  1. must : 子句必须匹配文档。类似于 SQL 中的 AND 操作符。
  2. filter : 子句必须匹配文档,但不影响评分。也就是说,它只过滤文档,但不参与评分计算。
  3. should : 子句可以匹配文档。如果在一个 bool 查询中包含了多个 should 子句,则至少一个 should 子句必须匹配文档。类似于 SQL 中的 OR 操作符。
  4. must_not: 子句不能匹配文档。类似于 SQL 中的 NOT 操作符。

eg:

复制代码
GET you_index/_search
{
  "query": {
        "bool": {
            "must": [
                {
                    "bool": {
                        "should": [
                            {
                                "term": {
                                    "name": {
                                        "value": "林俊凯",
                                        "boost": 1
                                    }
                                }
                            },
                            {
                                "term": {
                                    "zh_name": {
                                        "value": "林俊凯",
                                        "boost": 1
                                    }
                                }
                            }
                        ]
                    }
                },
                {
                    "bool": {
                        "should": [
                            {
                                "range": {
                                    "fans_num": {
                                        "gte": "800"
                                    }
                                }
                            },
                            {
                                "terms": {
                                    "tag": [
                                        1010,
                                        1013
                                    ]
                                }
                            }
                        ]
                    }
                }
            ]
        }
    },
    "sort": {
        "_score": {
            "order": "desc"
        },
        "score": {
            "order": "desc"
        }
    }
}

range

复制代码
    "range": {
            "fans_num": {
              "gte": 800,
              "lte":126334
            }
     }

term

terms

prefix

multi_match

multi_phrase

analyzer

mla

standard

keyword

slop

3<80%

相关推荐
紧固视界1 小时前
了解常见紧固件分类标准
大数据·制造·紧固件·上海紧固件展
无忧智库1 小时前
跨国制造企业全球供应链协同平台(SRM+WMS+TMS)数字化转型方案深度解析:打造端到端可视化的“数字供应链“(WORD)
大数据
乐迪信息2 小时前
乐迪信息:AI防爆摄像机在船舶监控的应用
大数据·网络·人工智能·算法·无人机
Hernon3 小时前
AI智能体 - 探索与发现 Clawdbot >> Moltbot
大数据·人工智能·ai智能体·ai开发框架
Mikhail_G3 小时前
Mysql数据库操作指南——排序(零基础篇十)
大数据·数据库·sql·mysql·数据分析
7***n753 小时前
2026年GEO深度评测:AI时代营销新基建的实践者与分化
大数据·人工智能
你才是臭弟弟3 小时前
Amazon S3 和 MinIO (数据湖的选型)
大数据·云原生
guizhoumen5 小时前
2026年建站系统推荐及选项指南
大数据·运维·人工智能
蘑菇物联5 小时前
蘑菇物联入选“预见·2026”年度双榜,以AI技术赋能制造业绿色转型!
大数据·人工智能
跨境小技5 小时前
Reddit营销:如何在Reddit写出“像用户一样”的营销贴?、
大数据