elasticsearch (dsl)

正排索引 和 倒排索引

正排索引:通过id ,查询content

倒排索引:通过content,查询到符合的 ids

eg:

通过《静夜思》,找到整片文章。

通过"明月",找到《静夜思》 《望月怀古》《关山月》等

get 查询

索引的基本信息:

GET your_index/_mapping //跟看mysql表字段差不多

GET your_index/_alias //查看索引的别名

GET /_cat/health?v //查看集群状态

GET _cat/indices // 查看所有index

GET _cat/shards/your_index //查看指定索引的分片数,每个分片有主(p)副(r)分片

查询索引内容:

match_all:

复制代码
GET /you_index/_search
{
  "query":{
    "match_all": {}
}

bool

bool查询是一个非常强大且常用的复合查询,它允许你组合多个查询条件。bool 查询的核心概念包括以下四种子句:

  1. must : 子句必须匹配文档。类似于 SQL 中的 AND 操作符。
  2. filter : 子句必须匹配文档,但不影响评分。也就是说,它只过滤文档,但不参与评分计算。
  3. should : 子句可以匹配文档。如果在一个 bool 查询中包含了多个 should 子句,则至少一个 should 子句必须匹配文档。类似于 SQL 中的 OR 操作符。
  4. must_not: 子句不能匹配文档。类似于 SQL 中的 NOT 操作符。

eg:

复制代码
GET you_index/_search
{
  "query": {
        "bool": {
            "must": [
                {
                    "bool": {
                        "should": [
                            {
                                "term": {
                                    "name": {
                                        "value": "林俊凯",
                                        "boost": 1
                                    }
                                }
                            },
                            {
                                "term": {
                                    "zh_name": {
                                        "value": "林俊凯",
                                        "boost": 1
                                    }
                                }
                            }
                        ]
                    }
                },
                {
                    "bool": {
                        "should": [
                            {
                                "range": {
                                    "fans_num": {
                                        "gte": "800"
                                    }
                                }
                            },
                            {
                                "terms": {
                                    "tag": [
                                        1010,
                                        1013
                                    ]
                                }
                            }
                        ]
                    }
                }
            ]
        }
    },
    "sort": {
        "_score": {
            "order": "desc"
        },
        "score": {
            "order": "desc"
        }
    }
}

range

复制代码
    "range": {
            "fans_num": {
              "gte": 800,
              "lte":126334
            }
     }

term

terms

prefix

multi_match

multi_phrase

analyzer

mla

standard

keyword

slop

3<80%

相关推荐
Guheyunyi3 小时前
智能守护:视频安全监测系统的演进与未来
大数据·人工智能·科技·安全·信息可视化
发哥来了4 小时前
主流AI视频生成商用方案选型评测:五大核心维度对比分析
大数据·人工智能
数研小生4 小时前
做京东评论分析系统11年,京东评论数据接口解析
大数据
金融小师妹5 小时前
基于LSTM-GARCH-EVT混合模型的贵金属极端波动解析:黄金白银双双反弹的逻辑验证
大数据·人工智能·深度学习·机器学习
yumgpkpm7 小时前
2026软件:白嫖,开源,外包,招标,晚进场(2025年下半年),数科,AI...中国的企业软件产业出路
大数据·人工智能·hadoop·算法·kafka·开源·cloudera
xixixi777777 小时前
今日 AI 、通信、安全行业前沿日报(2026 年 2 月 4 日,星期三)
大数据·人工智能·安全·ai·大模型·通信·卫星通信
珠海西格9 小时前
1MW光伏项目“四可”装置改造:逆变器兼容性评估方法详解
大数据·运维·服务器·云计算·能源
迎仔9 小时前
13-云原生大数据架构介绍:大数据世界的“弹性城市”
大数据·云原生·架构
产品人卫朋9 小时前
卫朋:IPD流程落地 - 市场地图拆解篇
大数据·人工智能·物联网
TDengine (老段)10 小时前
通过云服务 快速体验 TDengine
大数据·数据库·物联网·时序数据库·tdengine·涛思数据·iotdb