群体优化算法---蜂群优化算法应用于数据挖掘

介绍

蜂群优化算法(Bee Algorithm, BA)及其变种主要模拟蜜蜂的觅食行为,以解决复杂的优化问题。这类算法通过蜜蜂之间的信息交流和协作来探索解空间,寻找全局最优解。主要应用于参数优化,结构优化,机器学习,数据挖掘等各个领域。

本文示例

本文将应用于数据挖掘,来解决聚类问题

代码

bee_algorithm_clustering

matlab 复制代码
function bee_algorithm_clustering(data, num_clusters, num_bees, num_iterations, elite_bees, selected_bees, patch_size)

    % data: 输入的数据集 (rows: samples, columns: features)
    % num_clusters: 聚类数
    % num_bees: 总蜜蜂数量
    % num_iterations: 最大迭代次数
    % elite_bees: 精英蜜蜂数量
    % selected_bees: 选定蜜蜂数量
    % patch_size: 搜索邻域大小

    % 初始化蜜蜂群
    [num_samples, num_features] = size(data);
    bees = initialize_bees(num_bees, num_clusters, num_features);
    
    % 计算每只蜜蜂的适应度
    fitness = evaluate_bees(bees, data);
    
    for iter = 1:num_iterations
        % 排序蜜蜂根据适应度
        [fitness, idx] = sort(fitness);
        bees = bees(idx, :);
        
        % 搜索精英蜜蜂邻域
        for i = 1:elite_bees
            new_bees = local_search(bees(i, :), patch_size, num_clusters, num_features);
            new_fitness = evaluate_bees(new_bees, data);
            
            % 选择适应度更好的蜜蜂
            [best_new_fitness, best_idx] = min(new_fitness);
            if best_new_fitness < fitness(i)
                bees(i, :) = new_bees(best_idx, :);
                fitness(i) = best_new_fitness;
            end
        end
        
        % 搜索选定蜜蜂邻域
        for i = (elite_bees+1):selected_bees
            new_bees = local_search(bees(i, :), patch_size, num_clusters, num_features);
            new_fitness = evaluate_bees(new_bees, data);
            
            % 选择适应度更好的蜜蜂
            [best_new_fitness, best_idx] = min(new_fitness);
            if best_new_fitness < fitness(i)
                bees(i, :) = new_bees(best_idx, :);
                fitness(i) = best_new_fitness;
            end
        end
        
        % 更新其余蜜蜂位置
        for i = (selected_bees+1):num_bees
            bees(i, :) = initialize_bees(1, num_clusters, num_features);
            fitness(i) = evaluate_bees(bees(i, :), data);
        end
        
        % 输出当前最优适应度
        disp(['Iteration ', num2str(iter), ': Best Fitness = ', num2str(fitness(1))]);
    end
    
    % 输出最优聚类中心
    best_bee = reshape(bees(1, :), num_clusters, num_features);
    disp('Best Cluster Centers:');
    disp(best_bee);
    
    % 绘制聚类结果
    distances = pdist2(data, best_bee);
    [~, assignments] = min(distances, [], 2);
    figure;
    hold on;
    colors = lines(num_clusters);
    for k = 1:num_clusters
        scatter(data(assignments == k, 1), data(assignments == k, 2), 36, colors(k, :), 'filled');
        scatter(best_bee(k, 1), best_bee(k, 2), 100, colors(k, :), 'x', 'LineWidth', 2);
    end
    title('聚类结果');
    xlabel('Feature 1');
    ylabel('Feature 2');
    hold off;
end

function bees = initialize_bees(num_bees, num_clusters, num_features)
    % 随机初始化蜜蜂位置
    bees = rand(num_bees, num_clusters * num_features);
end

function fitness = evaluate_bees(bees, data)
    % 评估每只蜜蜂的适应度 (SSE)
    [num_bees, ~] = size(bees);
    [num_samples, ~] = size(data);
    num_clusters = size(bees, 2) / size(data, 2);
    fitness = zeros(num_bees, 1);
    
    for i = 1:num_bees
        centers = reshape(bees(i, :), num_clusters, size(data, 2));
        distances = pdist2(data, centers);
        [~, assignments] = min(distances, [], 2);
        fitness(i) = sum(sum((data - centers(assignments, :)).^2));
    end
end

function new_bees = local_search(bee, patch_size, num_clusters, num_features)
    % 局部搜索生成新蜜蜂
    new_bees = repmat(bee, patch_size, 1);
    perturbations = randn(patch_size, num_clusters * num_features) * 0.1;
    new_bees = new_bees + perturbations;
end

说明

bee_algorithm_clustering 函数:该函数是蜂群优化算法的主函数,用于执行聚类任务。

data:输入的数据集。

num_clusters:要找到的聚类中心的数量。

num_bees:蜜蜂总数。

num_iterations:最大迭代次数。

elite_bees:精英蜜蜂的数量。

selected_bees:选定蜜蜂的数量。

patch_size:搜索邻域的大小。

初始化蜜蜂群:使用随机位置初始化蜜蜂

评估适应度:使用均方误差(SSE)评估每只蜜蜂的适应度

局部搜索:对精英蜜蜂和选定蜜蜂进行局部搜索,生成新的蜜蜂并评估其适应度

更新蜜蜂位置:根据适应度更新蜜蜂的位置

输出结果:输出最佳聚类中心

使用以下代码生成数据集,然后保存名为run_bee_algorithm_clustering,运行

matlab 复制代码
% 生成数据集
rng(1); % 设置随机种子以便重复实验
num_samples_per_cluster = 50;
cluster1 = bsxfun(@plus, randn(num_samples_per_cluster, 2), [2, 2]);
cluster2 = bsxfun(@plus, randn(num_samples_per_cluster, 2), [-2, -2]);
cluster3 = bsxfun(@plus, randn(num_samples_per_cluster, 2), [2, -2]);

data = [cluster1; cluster2; cluster3];

% 绘制数据集
figure;
scatter(data(:, 1), data(:, 2), 'filled');
title('原始数据集');
xlabel('Feature 1');
ylabel('Feature 2');

% 参数设置
num_clusters = 3;
num_bees = 50;
num_iterations = 100;
elite_bees = 5;
selected_bees = 15;
patch_size = 10;

% 运行蜂群优化算法进行聚类
bee_algorithm_clustering(data, num_clusters, num_bees, num_iterations, elite_bees, selected_bees, patch_size);

说明

生成数据集:生成一个包含三类数据点的二维数据集

效果


相关推荐
qzhqbb2 小时前
基于统计方法的语言模型
人工智能·语言模型·easyui
冷眼看人间恩怨3 小时前
【话题讨论】AI大模型重塑软件开发:定义、应用、优势与挑战
人工智能·ai编程·软件开发
2401_883041083 小时前
新锐品牌电商代运营公司都有哪些?
大数据·人工智能
pianmian13 小时前
python数据结构基础(7)
数据结构·算法
AI极客菌4 小时前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭4 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^4 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
Power20246665 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k5 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫5 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法