每天五分钟深度学习:如何使用计算图来反向计算参数的导数?

本文重点

在上一个课程中,我们使用一个例子来计算函数J,也就相当于前向传播的过程,本节课程我们将学习如何使用计算图计算函数J的导数。相当于反向传播的过程。

计算J对v的导数,dJ/dv=3

计算J对a的导数,dJ/da=(dJ/dv)*(dv/da)=3*1=3

计算J对u的导数,dJ/du=(dJ/dv)*(dv/du)=3*1=3

计算J对b的导数,dJ/db=(dJ/dv)*(dv/du)*(du/db)=3*1*c=3c

因为本例中c=2,所以dJ/db=6

以上都是输出值J(最终变量J)对其它变量的导数,这里我们要引入一种新的符号,我们使用:

dv来表示dJ/dv

da来表示dJ/da

du来表示dJ/du

db来表示dJ/db

现在我们已经知道了输出J对其它变量的导数计算方法,核心就是从右往左按照计算图进行链式计算。

相关推荐
ACE198511 小时前
AI Agent 设计模式深度解析:提示链(Prompt Chaining)模式
人工智能·设计模式·prompt
AndrewHZ11 小时前
【图像处理基石】如何使用大模型进行图像处理工作?
图像处理·人工智能·深度学习·算法·llm·stablediffusion·可控性
AndrewHZ11 小时前
【图像处理基石】图像处理的基础理论体系介绍
图像处理·人工智能·算法·计算机视觉·cv·理论体系
人邮异步社区12 小时前
如何有效地利用AI辅助编程,提高编程效率?
人工智能·深度学习·ai编程
星星上的吴彦祖12 小时前
多模态感知驱动的人机交互决策研究综述
python·深度学习·计算机视觉·人机交互
许泽宇的技术分享12 小时前
当AI Agent遇上.NET:微软Agent Framework的架构奥秘与实战启示
人工智能·microsoft·.net
爱笑的眼睛1112 小时前
PyTorch Lightning:重新定义深度学习工程实践
java·人工智能·python·ai
做cv的小昊12 小时前
VLM经典论文阅读:【综述】An Introduction to Vision-Language Modeling
论文阅读·人工智能·计算机视觉·语言模型·自然语言处理·bert·transformer
开放知识图谱12 小时前
论文浅尝 | 利用条件语句激发和提升大语言模型的因果推理能力(CL2025)
人工智能·语言模型·自然语言处理