每天五分钟深度学习:如何使用计算图来反向计算参数的导数?

本文重点

在上一个课程中,我们使用一个例子来计算函数J,也就相当于前向传播的过程,本节课程我们将学习如何使用计算图计算函数J的导数。相当于反向传播的过程。

计算J对v的导数,dJ/dv=3

计算J对a的导数,dJ/da=(dJ/dv)*(dv/da)=3*1=3

计算J对u的导数,dJ/du=(dJ/dv)*(dv/du)=3*1=3

计算J对b的导数,dJ/db=(dJ/dv)*(dv/du)*(du/db)=3*1*c=3c

因为本例中c=2,所以dJ/db=6

以上都是输出值J(最终变量J)对其它变量的导数,这里我们要引入一种新的符号,我们使用:

dv来表示dJ/dv

da来表示dJ/da

du来表示dJ/du

db来表示dJ/db

现在我们已经知道了输出J对其它变量的导数计算方法,核心就是从右往左按照计算图进行链式计算。

相关推荐
BSV区块链7 分钟前
如何在BSV区块链上实现可验证AI
人工智能·区块链
武子康24 分钟前
大数据-212 数据挖掘 机器学习理论 - 无监督学习算法 KMeans 基本原理 簇内误差平方和
大数据·人工智能·学习·算法·机器学习·数据挖掘
deephub25 分钟前
Tokenformer:基于参数标记化的高效可扩展Transformer架构
人工智能·python·深度学习·架构·transformer
Q81375746030 分钟前
数据挖掘在金融交易中的应用:民锋科技的智能化布局
人工智能·科技·数据挖掘
qzhqbb34 分钟前
语言模型的采样方法
人工智能·语言模型·自然语言处理
qzhqbb37 分钟前
基于 Transformer 的语言模型
人工智能·语言模型·自然语言处理·transformer
___Dream38 分钟前
【CTFN】基于耦合翻译融合网络的多模态情感分析的层次学习
人工智能·深度学习·机器学习·transformer·人机交互
极客代码1 小时前
【Python TensorFlow】入门到精通
开发语言·人工智能·python·深度学习·tensorflow
义小深1 小时前
TensorFlow|咖啡豆识别
人工智能·python·tensorflow
Tianyanxiao1 小时前
如何利用探商宝精准营销,抓住行业机遇——以AI技术与大数据推动企业信息精准筛选
大数据·人工智能·科技·数据分析·深度优先·零售