每天五分钟深度学习:如何使用计算图来反向计算参数的导数?

本文重点

在上一个课程中,我们使用一个例子来计算函数J,也就相当于前向传播的过程,本节课程我们将学习如何使用计算图计算函数J的导数。相当于反向传播的过程。

计算J对v的导数,dJ/dv=3

计算J对a的导数,dJ/da=(dJ/dv)*(dv/da)=3*1=3

计算J对u的导数,dJ/du=(dJ/dv)*(dv/du)=3*1=3

计算J对b的导数,dJ/db=(dJ/dv)*(dv/du)*(du/db)=3*1*c=3c

因为本例中c=2,所以dJ/db=6

以上都是输出值J(最终变量J)对其它变量的导数,这里我们要引入一种新的符号,我们使用:

dv来表示dJ/dv

da来表示dJ/da

du来表示dJ/du

db来表示dJ/db

现在我们已经知道了输出J对其它变量的导数计算方法,核心就是从右往左按照计算图进行链式计算。

相关推荐
FreeBuf_22 分钟前
从“策略对抗”到“模型对抗”:朴智平台如何重塑金融风控新范式?
大数据·人工智能
GJGCY2 小时前
金融智能体的技术底座解析:AI Agent如何实现“认知+执行”闭环?
人工智能·经验分享·ai·金融·自动化
SteveRocket3 小时前
Python机器学习与数据分析教程之pandas
python·机器学习·数据分析
koo3643 小时前
李宏毅机器学习笔记32
人工智能·笔记·机器学习
材料科学研究3 小时前
机器学习催化剂设计!
深度学习·机器学习·orr·催化剂·催化剂设计·oer
材料科学研究3 小时前
机器学习锂离子电池!预估电池!
深度学习·机器学习·锂离子电池·电池·电池健康·电池管理·电池寿命
长桥夜波3 小时前
机器学习日报04
人工智能·机器学习
Cathyqiii5 小时前
Diffusion-TS:一种基于季节性-趋势分解与重构引导的可解释时间序列扩散模型
人工智能·神经网络·1024程序员节
数字冰雹5 小时前
数字孪生技术 重构 智能仓储新生态
人工智能·重构
明明真系叻6 小时前
最优传输理论学习(1)+PINN文献阅读
深度学习·学习