GBDT 算法【python,机器学习,算法】

GBDT 即 Gradient Boosting Decision Tree 梯度提升树, 是一种迭代的决策树算法,又叫 MART(Multiple Additive Regression Tree),

它通过构造一组弱的学习器(树),然后把多棵决策树的结果累加起来作为最终的预测输出。该算法将决策树与集成思想进行了有效的结合。具体实现步骤如下:

  1. 初始化基分类器。
  2. 以当前学习器的预测值为准,计算未正确预测的样本(即残差)。
  3. 使用残差构建下一棵决策树(主要思想:试图纠正前一个模型的错误,使其不断提升预测正确率)。
  4. 重复 2-3 步骤,直到满足终止条件为止(误差很小或者达到一定的迭代次数),结束迭代。
  5. 将迭代中的每个分类器产生的预测值相加,得到最终的预测结果。

下面是一个简单的示例,使用梯度提升算法和决策树分类器对手写数字数据进行对比分析:

python 复制代码
# 导入sklearn内置数据集
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits

# 导入手写数字数据
digits = load_digits()

plt.figure(1, figsize=(3.5, 3.5), facecolor='white')
for i in range(10):
	for j in range(10):
		ax = plt.subplot(10, 10, 10 * i + j + 1)
		# 设置子图的位置
		ax.set_xticks([])
		# 隐藏横坐标
		# 隐藏纵坐标
		ax.set_yticks([])
		plt.imshow(digits.images[9 * i + j], cmap=plt.cm.gray_r,
		           interpolation="nearest")
plt.show()

# 导入sklearn中的模型验证类
from sklearn.model_selection import train_test_split

# 使用train test_split函数自动分割训练数据集和测试数据集
x_train, x_test, y_train, y_test = train_test_split(digits.data, digits.target,
                                                    test_size=0.3)
# 导入sklearn模块中的决策树分类器类
from sklearn.tree import DecisionTreeClassifier

# 定义一个决策树分类器对象
dtc = DecisionTreeClassifier()
dtc.fit(x_train, y_train)
# 导入sklearn模块中的梯度提升分类器类
from sklearn.ensemble import GradientBoostingClassifier

# 定义一个梯度提升决策树分类器对象
gbc = GradientBoostingClassifier(n_estimators=30, learning_rate=0.8)
gbc.fit(x_train, y_train)
print("单棵决策树在训练集上的性能:%.3f" % dtc.score(x_train, y_train))
print("单棵决策树在测试集上的性能:%.3f" % dtc.score(x_test, y_test))
print("GBDT(T-30)在训练集上的性能:%.3f" % gbc.score(x_train, y_train))
print("GBDT(T-30)在测试集上的性能:%.3f" % gbc.score(x_test, y_test))
# 观察弱分类器数量对分类准确度的影响
# 弱分类器的最大值
T_max = 39
gbc_train_scores = []
gbc_test_scores = []
for i in range(1, T_max + 1):
	gbc = GradientBoostingClassifier(n_estimators=i, learning_rate=0.1)
	gbc.fit(x_train, y_train)
	gbc_train_scores.append(gbc.score(x_train, y_train))
	gbc_test_scores.append(gbc.score(x_test, y_test))

# 绘制测试结果
import matplotlib.pyplot as plt

# 解决图形中的中文显示乱码
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.matplotlib.rcParams['axes.unicode_minus'] = False
plt.figure()
# 解决图形中的坐标轴负号显示问题
plt.plot(range(1, T_max + 1), gbc_train_scores, color='r', label='训练集')
plt.plot(range(1, T_max + 1), gbc_test_scores, color='g', label='测试集')
plt.title("基学习器数量对GBDT性能的影响")
plt.xlabel("基分类器数量")
plt.ylabel("准确率")
plt.xlim(1, T_max)
plt.legend()
plt.show()

上面的代码演示了基学习器的数量对 GBDT 性能的影响。主要步骤如下:

  1. 导入训练数据。
  2. 将数据切分为两个集合:训练集和测试集。
  3. 使用不同数量的学期器对数据集进行拟合训练和预测。
  4. 绘制基学习器数量对 GBDT 性能的影响图像。

你可以根据实际需要对代码中的数据进行调整以适应不同的测试需要。

你可以根据实际需要对代码中的数据进行调整以适应不同的测试需要。

相关推荐
skaiuijing3 分钟前
Sparrow系列拓展篇:对信号量应用问题的深入讨论
c语言·开发语言·算法·中间件·操作系统
灰末18 分钟前
[第15次CCFCSP]数据中心
数据结构·c++·算法·图论·kruskal
qystca23 分钟前
洛谷 P1049 [NOIP2001 普及组] 装箱问题 C语言 记忆化搜索->‘倒序‘dp->‘正序‘dp
c语言·数据结构·算法
lisacumt23 分钟前
【spark】pyspark kerberos 案例,即pyspark-utils客户端工具类
大数据·python·spark
AI原吾27 分钟前
探索Python的HTTP之旅:揭秘Requests库的神秘面纱
开发语言·python·http·requests
_可乐无糖33 分钟前
如何还原 HTTP 请求日志中的 URL 编码参数?详解 %40 到 @
网络·python·https
云帆码上学38 分钟前
Django快速上手:从零到一构建Web应用
python·django
thesky12345640 分钟前
活着就好20241126
学习·算法
阡之尘埃43 分钟前
Python数据分析案例65——基于深度学习的音频文件分类(音频文件特征提取和模型构建)
python·深度学习·分类·数据分析·数据可视化·音频文件
2739920291 小时前
python(四)os模块、sys模块
python