神经网络与深度学习——第6章 循环神经网络

本文讨论的内容参考自《神经网络与深度学习》https://nndl.github.io/ 第6章 循环神经网络

给网络增加记忆能力

延时神经网络

有外部输入的非线性自回归模型

循环神经网络

简单循环网络

循环神经网络的计算能力

循环神经网络的通用近似定理



图灵完备

应用到机器学习

序列到类别模式


同步的序列到序列模式

异步的序列到序列模式


参数学习

随时间反向传播算法



实时循环学习算法


长程依赖问题


改进方案


基于门控的循环神经网络

长短期记忆网络




LSTM网络的各种变体


门控循环单元网络


深层循环神经网络

堆叠循环神经网络

双向循环神经网络


扩展到图结构

递归神经网络



图神经网络


总结和深入阅读


关于长程依赖问题的理解




习题

延时神经网络是对前馈神经网络增加延时器,当前层的神经元的活性值依赖于前一层神经元的最近K个时刻的活性值;

卷积神经网络是对前馈神经网络增加卷积层和池化层;

循环神经网络是对前馈神经网络增加自反馈的神经元,RNN当前时刻的活性值通常依赖于之前所有时刻的活性值,因为通过循环连接来传递信息。

卷积神经网络没有时序性的概念,循环神经网络具有时序性,如果我们并不在意前一个决策结果是什么,用CNN,比如手写数字识别,在自然语言处理中,上一个词很大程度影响下一个词,可以用RNN。










相当于LSTM保证一条远距离路径梯度不消失,总体的远距离梯度就不会消失,近距离梯度是一直存在的,梯度消失是难以捕捉远距离的依赖关系。

同理,GRU保证一条远距离路径梯度是加和的形式,不容易消失。

双向循环神经网络,递归神经网络,图神经网络



很显然,右边的退化结构就是简单的循环神经网络。

相关推荐
Victory_orsh3 分钟前
“自然搞懂”深度学习(基于Pytorch架构)——010203
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
java1234_小锋3 分钟前
PyTorch2 Python深度学习 - 模型保存与加载
开发语言·python·深度学习·pytorch2
Python图像识别6 分钟前
74_基于深度学习的垃圾桶垃圾溢出检测系统(yolo11、yolov8、yolov5+UI界面+Python项目源码+模型+标注好的数据集)
python·深度学习·yolo
CoovallyAIHub12 分钟前
突破360°跟踪极限!OmniTrack++:全景MOT新范式,HOTA指标狂飙43%
深度学习·算法·计算机视觉
lybugproducer37 分钟前
深度学习专题:模型训练的数据并行(二)
人工智能·深度学习·神经网络
CoovallyAIHub1 小时前
首个大规模、跨模态医学影像编辑数据集,Med-Banana-50K数据集专为医学AI打造(附数据集地址)
深度学习·算法·计算机视觉
电鱼智能的电小鱼1 小时前
基于电鱼 ARM 边缘网关的智慧工地数据可靠传输方案——断点续传 + 4G/5G冗余通信,保障数据完整上传
arm开发·人工智能·嵌入式硬件·深度学习·5g·机器学习
武子康2 小时前
AI研究-121 DeepSeek-OCR 研究路线:无限上下文、跨模态抽取、未来创意点、项目创意点
人工智能·深度学习·机器学习·ai·ocr·deepseek·deepseek-ocr
暴风鱼划水2 小时前
三维重建【4-A】3D Gaussian Splatting:代码解读
python·深度学习·3d·3dgs
执笔论英雄2 小时前
【大模型训练】zero2 梯度分片
pytorch·python·深度学习