二叉树讲解

目录

前言

二叉树的遍历

层序遍历

队列的代码

queuepush和queuepushbujia的区别

判断二叉树是否是完全二叉树

前序

中序

后序

功能展示

创建二叉树

初始化

销毁

简易功能介绍

二叉树节点个数

二叉树叶子节点个数

二叉树第k层节点个数

二叉树查找值为x的节点

判断是否为单值二叉数

判断二叉数高度


前言

本文讲解关于二叉树的创建和各种功能的实现,重点讲解前,中,后和层序遍历的写法

(层序遍历放到了本文前面先讲,如果是刚接触二叉数可以先看功能展示)

前中后序的遍历都用到了递归都写法

而层序遍历却不方便,只能创建队列来解决

二叉树的遍历

层序遍历

层序遍历这里重点讲解一下

因为不能使用递归,只好创建队列来帮助实现

队列的代码

头文件

cpp 复制代码
typedef BTNode* QDataType;

typedef struct QueueNode
{
	struct QueueNode* next;
	QDataType val;
}QNode;

typedef struct Queue
{
	QNode* phead;
	QNode* ptail;
	int size;
}Queue;

void QueueInit(Queue* pq);
void QueueDestroy(Queue* pq);

// 队尾插入
void QueuePush(Queue* pq, QDataType x);
void QueuePushbujia(Queue* pq, QDataType x);
// 队头删除
void QueuePop(Queue* pq);

// 取队头和队尾的数据
QDataType QueueFront(Queue* pq);
QDataType QueueBack(Queue* pq);

int QueueSize(Queue* pq);
bool QueueEmpty(Queue* pq);

源码

cpp 复制代码
void QueueInit(Queue* pq)
{
	assert(pq);
	pq->phead = NULL;
	pq->ptail = NULL;
	pq->size = 0;
}

void QueueDestroy(Queue* pq)
{
	assert(pq);

	QNode* cur = pq->phead;
	while (cur)
	{
		QNode* next = cur->next;
		free(cur);

		cur = next;
	}

	pq->phead = pq->ptail = NULL;
	pq->size = 0;
}

// 队尾插入
void QueuePush(Queue* pq, QDataType x)
{
	assert(pq);

	QNode* newnode = (QNode*)malloc(sizeof(QNode));
	if (newnode == NULL)
	{
		perror("malloc fail");
		return;
	}

	newnode->next = NULL;
	newnode->val = x;

	if (pq->ptail == NULL)
	{
		pq->phead = pq->ptail = newnode;
	}
	else
	{
		pq->ptail->next = newnode;
		pq->ptail = newnode;
	}

	pq->size++;
}

void QueuePushbujia(Queue* pq, QDataType x)
{
	assert(pq);

	QNode* newnode = (QNode*)malloc(sizeof(QNode));
	if (newnode == NULL)
	{
		perror("malloc fail");
		return;
	}

	newnode->next = NULL;
	newnode->val = x;

	if (pq->ptail == NULL)
	{
		pq->phead = pq->ptail = newnode;
	}
	else
	{
		pq->ptail->next = newnode;
		pq->ptail = newnode;
	}
}
// 队头删除
void QueuePop(Queue* pq)
{
	assert(pq);
	assert(pq->size != 0);

	/*QNode* next = pq->phead->next;
	free(pq->phead);
	pq->phead = next;

	if (pq->phead == NULL)
		pq->ptail = NULL;*/

		// 一个节点
	if (pq->phead->next == NULL)
	{
		free(pq->phead);
		pq->phead = pq->ptail = NULL;
	}
	else // 多个节点
	{
		QNode* next = pq->phead->next;
		free(pq->phead);
		pq->phead = next;
	}

	pq->size--;
}

QDataType QueueFront(Queue* pq)
{
	assert(pq);
	assert(pq->phead);

	return pq->phead->val;
}

QDataType QueueBack(Queue* pq)
{
	assert(pq);
	assert(pq->ptail);

	return pq->ptail->val;
}


int QueueSize(Queue* pq)
{
	assert(pq);

	return pq->size;
}

bool QueueEmpty(Queue* pq)
{
	assert(pq);

	return pq->size == 0;
}
queuepush和queuepushbujia的区别

两个都是将数据尾插进去,但bujia函数并不会对size加加

这样我们不仅可以正常打印N还不影响真实数据的打印

cpp 复制代码
void BinaryTreeLevelOrder(BTNode* root)
{
	assert(root);
	Queue a;
	QueueInit(&a);
	BTNode* n = BuyNode1(root->_data);
	n = root;
	BTNode* null = BuyNode1('N');
	printf("%c ", n->_data);
	while (1)
	{
		if (n->_left != NULL)
		{
			QueuePush(&a, n->_left);
		}
		else
		{
			QueuePushbujia(&a,null);
		}
		if (n->_right != NULL)
		{
			QueuePush(&a, n->_right);
		}
		else
		{
			QueuePushbujia(&a,null);
		}
		if (QueueEmpty(&a))
		{
			break;
		}
		n = QueueFront(&a);
		QueuePop(&a);
		if (n->_data == 'N')
		{
			a.size++;
		}
		printf("%c ", n->_data);
	}
}

每拿出一个头数据时就会对size--这样的话如果为N的话很有可能会出现size减完了但实际数据没有打印完的情况

所以这里加入了判断n->_data等于N时应该让size++

利用写出来的层序遍历就可以实现

判断二叉树是否是完全二叉树

i和x的作用

如果是完全二叉树遇到一个N后不可能再遇到N意外的数了

否则就是非完全二叉树

利用这一特征

当遇到第一个N时让i++

如果i不等于0说明遇到过N了如果此时遇到了非N的数那么就让n++

如果两个数同时不为0则为非完全二叉树

cpp 复制代码
int BinaryTreeComplete(BTNode* root)
{
	assert(root);
	Queue a;
	QueueInit(&a);
	BTNode* n = BuyNode1(root->_data);
	n = root;
	BTNode* null = BuyNode1('N');
	//printf("%c ", n->_data);
	char pan = 'x';
	int i = 0;
	int x = 0;
	while (1)
	{
		if (n->_left != NULL)
		{
			QueuePush(&a, n->_left);
		}
		else
		{
			QueuePushbujia(&a, null);
		}
		if (n->_right != NULL)
		{
			QueuePush(&a, n->_right);
		}
		else
		{
			QueuePushbujia(&a, null);
		}
		if (QueueEmpty(&a))
		{
			break;
		}
		n = QueueFront(&a);
		QueuePop(&a);
		if (n->_data == 'N')
		{
			a.size++;
		}
		//printf("%c ", n->_data);
		pan = n->_data;
		if (pan == 'N')
		{
			i++;
		}
		if (i !=0)
		{
			if (pan != 'N')
			{
				x++;
			}
		}
		if (i!=0&&x!=0)
		{
			return 1;
		}
	}
	return 0;
}

前序

cpp 复制代码
void BinaryTreePrevOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("N ");
		return;
	}
	printf("%c ", root->_data);
	BinaryTreePrevOrder(root->_left);
	BinaryTreePrevOrder(root->_right);
}

中序

cpp 复制代码
void BinaryTreeInOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("N");
		return;
	}
	BinaryTreeInOrder(root->_left);
	printf("%c ", root->_data);
	BinaryTreeInOrder(root->_right);
}

后序

cpp 复制代码
void BinaryTreePostOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("N");
		return;
	}
	BinaryTreePostOrder(root->_left);
	BinaryTreePostOrder(root->_right);
	printf("%c ", root->_data);
}

功能展示

完成关于二叉树的如下功能

cpp 复制代码
//初始化
BTNode* BuyNode1(BTDataType x);

// 通过前序遍历的数组"ABD##E#H##CF##G##"构建二叉树
BTNode* BinaryTreeCreate(BTDataType* a, int n, int* pi);
// 二叉树销毁
void BinaryTreeDestory(BTNode** root);
// 二叉树节点个数
int BinaryTreeSize(BTNode* root);
// 二叉树叶子节点个数
int BinaryTreeLeafSize(BTNode* root);
// 二叉树第k层节点个数
int BinaryTreeLevelKSize(BTNode* root, int k);
// 二叉树查找值为x的节点
BTNode* BinaryTreeFind(BTNode* root, BTDataType x);
// 二叉树前序遍历 
void BinaryTreePrevOrder(BTNode* root);
// 二叉树中序遍历
void BinaryTreeInOrder(BTNode* root);
// 二叉树后序遍历
void BinaryTreePostOrder(BTNode* root);
// 层序遍历
void BinaryTreeLevelOrder(BTNode* root);
// 判断二叉树是否是完全二叉树
int BinaryTreeComplete(BTNode* root);
//判断是否为单值二叉数
bool isUnivalTree(struct BTNode* root);
//判断二叉数高度
int maxDepth(struct BTNode* root);

创建二叉树

手动创建一个二叉树可以让后面的功能更方便调试

首先确定结构体内容如下

cpp 复制代码
typedef char BTDataType;

typedef struct BinaryTreeNode
{
	BTDataType _data;
	struct BinaryTreeNode* _left;
	struct BinaryTreeNode* _right;
}BTNode;

在进行手动创建一个二叉树

创建之前需要初始化结构体

初始化

cpp 复制代码
//初始化
BTNode* BuyNode1(BTDataType x)
{
	BTNode* n = (BTNode*)malloc(sizeof(BTNode));
	if (n == NULL)
	{
		perror("malloc false");
		return NULL;
	}
	n->_data = x;
	n->_left = NULL;
	n->_right = NULL;
	return n;
}

有了初始化代码就可以正式创建二叉树了

cpp 复制代码
BTNode* headadd()
{
	BTNode* a1 = BuyNode1('a');
	BTNode* a2 = BuyNode1('b');
	BTNode* a3 = BuyNode1('c');
	BTNode* a4 = BuyNode1('d');
	BTNode* a5 = BuyNode1('e');
	a1->_left = a2;
	a1->_right = a3;
	a2->_left = a4;
	a4->_right = a5;
	return a1;
}

此时二叉树就建好了

有了初始化就需要有销毁,防止内存泄漏

销毁

使用递归思想比较方便

cpp 复制代码
void BinaryTreeDestory(BTNode** root)
{
	assert(root);
	assert(*root);
	BinaryTreeDestory(&((*root)->_left));
	BinaryTreeDestory(&((*root)->_right));
	free(*root);
	*root == NULL;
}

简易功能介绍

大多数采用递归的方法即可轻松解决

二叉树节点个数

cpp 复制代码
int BinaryTreeSize(BTNode* root)
{
	if (root == NULL)
	{
		return 0;
	}
	return 1+BinaryTreeSize(root->_left)+
		BinaryTreeSize(root->_right);

二叉树叶子节点个数

cpp 复制代码
int BinaryTreeLeafSize(BTNode* root)
{
    if (root == NULL)
    {
        return 0;
    }
    if (root->_left == NULL && root->_right == NULL)
    {
        return 1;
    }
    return BinaryTreeLeafSize(root->_left) 
        + BinaryTreeLeafSize(root->_right);
}

二叉树第k层节点个数

cpp 复制代码
int BinaryTreeLevelKSize(BTNode* root, int k)
{
    if (root == NULL||k<1)
    {
        return 0;
    }
    if (root!=NULL&&k == 1)
    {
        return 1;
    }
    return BinaryTreeLevelKSize(root->_left, k - 1) 
    +BinaryTreeLevelKSize(root->_right, k - 1);
}

二叉树查找值为x的节点

cpp 复制代码
BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
{
    if (root == NULL)
    {
        return NULL;
    }
    if (root->_data == x)
    {
        return root;
    }
    BTNode* lf = BinaryTreeFind(root->_left, x);
    if (lf != NULL)
    {
        return lf;
    }
    BTNode* lr = BinaryTreeFind(root->_right, x);
    if (lr != NULL)
    {
        return lr;
    }
    return NULL;
}

判断是否为单值二叉数

cpp 复制代码
bool isUnivalTree(BTNode* root) 
{
	if (root == NULL)
	{
		return true;
	}
	if (root->_left)
	{
		if (root->_data!= root->_left->_data)
		{
			return false;
		}
	}
	if (!isUnivalTree(root->_left))
	{
		return false;
	}
	if (root->_right)
	{
		if (root->_data != root->_right->_data)
		{
			return false;
		}
	}
	if (!isUnivalTree(root->_right))
	{
		return false;
	}
	return true;
}

判断二叉数高度

cpp 复制代码
int maxDepth(BTNode* root)
{
	if (root == NULL)
	{
		return 0;
	}
	int leftsize = maxDepth(root->_left);
	int rightsize = maxDepth(root->_right);
	return leftsize > rightsize ? leftsize + 1 : rightsize + 1;
}
相关推荐
一只鱼^_6 小时前
牛客周赛 Round 108
数据结构·c++·算法·动态规划·图论·广度优先·推荐算法
红豆怪怪7 小时前
[LeetCode 热题 100] 32. 最长有效括号
数据结构·python·算法·leetcode·动态规划·代理模式
AI 嗯啦7 小时前
计算机的排序方法
数据结构·算法·排序算法
_Coin_-8 小时前
算法训练营DAY58 第十一章:图论part08
数据结构·算法·图论
阿方.9188 小时前
《数据结构全解析:栈(数组实现)》
java·开发语言·数据结构
CYRUS_STUDIO8 小时前
LLVM 不止能编译!自定义 Pass + 定制 clang 实现函数名加密
c语言·c++·llvm
CYRUS_STUDIO9 小时前
OLLVM 移植 LLVM 18 实战,轻松实现 C&C++ 代码混淆
c语言·c++·llvm
南山十一少9 小时前
STM32CubeMX + HAL 库:基于 I²C 通信的 BMP280气压海拔测量
c语言·stm32·嵌入式硬件
小欣加油9 小时前
leetcode 912 排序数组(归并排序)
数据结构·c++·算法·leetcode·排序算法
zl_dfq10 小时前
数据结构 之 【模拟实现哈希表】
数据结构