基于稀疏辅助小波和线性时不变滤波器的惯性传感器步态周期分割方法(MATLAB R2018A)

每个人在肌肉骨骼状况、生理状况、心理特征以及个人行走的"风格"等方面都有各自的特点,因此,每个人都有自己的步态指纹。这意味着可以根据步态特征来进行身份识别。基于步态的身份识别是生物特征识别的一个新兴领域。其机制有3个显著的优点:1)远距离,即步态检测过程可以在较远的距离下进行;2)无打扰,即它不需要与用户进行明确的交互;3)难以模仿,即很难模仿一个人的步态。目前,许多研究人员通过视频进行步态身份识别。随着惯性传感器在便携式设备中的广泛配置,以及其在生物力学、神经康复、运动医学等中的广泛应用,基于惯性传感器的步态身份识别吸引了众多研究者的关注。基于惯性传感器的步态识别可以显著增强便携式设备的安全性。

鉴于此,提出一种基于稀疏辅助小波和线性时不变滤波器的惯性传感器步态周期分割方法,运行环境为MATLAB R2018A。

Matlab 复制代码
function [toe_off,heel_stk,iGS] = label_gait_segments(binX,gx,t1,toe_off,heel_stk)

% Gyro data
[ms_start,ms_stop] = edge_detection(binX);
iGS = [ms_start,ms_stop-1];

if ~isempty(iGS)
    if (size(iGS,1) >= 2)
        % first local maxima (toe-off event)
        [~,ind] = max(gx(t1+iGS(1,1):t1+iGS(1,2)));
        toe_off(1,t1+iGS(1,1)+ind-1) = gx(t1+iGS(1,1)+ind-1);
        
        % second local maxima (heel-strike event)
        max_val = 0; ss = 2;
        for ii=2:size(iGS,1)
            [max_v, max_i] = max(gx(t1+iGS(ii,1):t1+iGS(ii,2)));
            if max_v > max_val
                max_val = max_v; ind = max_i; ss = ii;
            end
        end
        heel_stk(1,t1+iGS(ss,1)+ind-1) = gx(t1+iGS(ss,1)+ind-1);
    end
end
%完整代码:https://mbd.pub/o/bread/mbd-ZJyXlJ9s

end

工学博士,担任《Mechanical System and Signal Processing》《中国电机工程学报》《控制与决策》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

相关推荐
昨日之日20061 天前
Wan2.2-S2V - 音频驱动图像生成电影级质量的数字人视频 ComfyUI工作流 支持50系显卡 一键整合包下载
人工智能·音视频
SEO_juper1 天前
大型语言模型SEO(LLM SEO)完全手册:驾驭搜索新范式
人工智能·语言模型·自然语言处理·chatgpt·llm·seo·数字营销
攻城狮7号1 天前
腾讯混元翻译模型Hunyuan-MT-7B开源,先前拿了30个冠军
人工智能·hunyuan-mt-7b·腾讯混元翻译模型·30个冠军
zezexihaha1 天前
从“帮写文案”到“管生活”:个人AI工具的边界在哪?
人工智能
算家云1 天前
nano banana官方最强Prompt模板来了!六大场景模板详解
人工智能·谷歌·ai大模型·算家云·ai生图·租算力,到算家云·nano banana 提示词
暴躁的大熊1 天前
AI助力决策:告别生活与工作中的纠结,明析抉择引领明智选择
人工智能
Gyoku Mint1 天前
提示词工程(Prompt Engineering)的崛起——为什么“会写Prompt”成了新技能?
人工智能·pytorch·深度学习·神经网络·语言模型·自然语言处理·nlp
honder试试1 天前
焊接自动化测试平台图像处理分析-模型训练推理
开发语言·python
机器学习之心1 天前
PINN驱动的高阶偏微分方程求解MATLAB代码
matlab·物理信息神经网络·高阶偏微分方程
梁小憨憨1 天前
zotero扩容
人工智能·笔记