动态规划-矩阵的最小路径和(只允许向右向下移动)

一、问题描述

二、解题思路

这个题目是典型的动态规划问题,只能从左上角开始,往右或者往下移动。

1.dp数组的初始化:

第一行:设置行总花费变量,每往右走一个格把当前格的花费Cost加到总花费中,总花费就是当前格的最小花费。

第一列:设置列总花费变量,每往下走一个格把当前格的花费Cost加到总花费中,总花费就是当前格的最小花费。

2.状态转移方程:

设当前在第[i][j]位置,从左上角到当前位置的总花费=下面两者较小值 加上当前格花费cost

2.1 从左侧格[i][j-1]往右走

2.2 从上侧格[i-1][j]往下走

即:dp[i][j] = Min(dp[i][j-1],dp[i-1][j])+cost

三、代码实现

java 复制代码
import java.util.*;

public class Solution {
    /**
     * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
     *
     * 
     * @param matrix int整型二维数组 the matrix
     * @return int整型
     */
    public int minPathSum (int[][] matrix) {
        // 这个题目是典型的动态规划问题
        int rowLen=matrix.length;
        int colLen=matrix[0].length;
        int[][] dpMatrix=new int[rowLen][colLen];
        
        //初始化dpMatrix
        int colCost=0;
        for(int col=0;col<colLen;col++){//初始化第0行
            colCost+=matrix[0][col];
            dpMatrix[0][col]=colCost;
        }
        int rowCost=0;
        for(int row=0;row<rowLen;row++){//初始化第0列
            rowCost+=matrix[row][0];
            dpMatrix[row][0]=rowCost;
        }

        //每次只能向右或者向下移动
        for(int row=1;row<rowLen;row++){
            for(int col=1;col<colLen;col++){
                int downCost=dpMatrix[row-1][col]+matrix[row][col];
                int rightCost=dpMatrix[row][col-1]+matrix[row][col];
                dpMatrix[row][col]=Math.min(downCost,rightCost);
            }
        }
        return dpMatrix[rowLen-1][colLen-1];
    }
}

四、刷题链接

矩阵的最小路径和_牛客题霸_牛客网

相关推荐
MM_MS1 分钟前
Halcon控制语句
java·大数据·前端·数据库·人工智能·算法·视觉检测
mit6.82414 分钟前
山脉二分找中值|子集型回溯
算法
乃瞻衡宇23 分钟前
Agent Skills 完全指南:让你的 AI Agent 拥有超能力
算法
mit6.82426 分钟前
pair<int, TreeNode*> dfs
算法
初晴や1 小时前
【C++】图论:基础理论与实际应用深入解析
c++·算法·图论
李泽辉_1 小时前
深度学习算法学习(五):手动实现梯度计算、反向传播、优化器Adam
深度学习·学习·算法
李泽辉_2 小时前
深度学习算法学习(一):梯度下降法和最简单的深度学习核心原理代码
深度学习·学习·算法
꧁Q༒ོγ꧂2 小时前
算法详解---大纲
算法
m0_603888712 小时前
Scaling Trends for Multi-Hop Contextual Reasoning in Mid-Scale Language Models
人工智能·算法·ai·语言模型·论文速览
Xの哲學2 小时前
Linux io_uring 深度剖析: 重新定义高性能I/O的架构革命
linux·服务器·网络·算法·边缘计算