python pytorch之torch.flip 按轴翻转/倒叙排列 方法

目录

方法描述

参数

函数签名

第二个参数输入单维度,翻转列表内的维度

第二个参数输入列表,则按照列表和翻转规则,依次翻转列表内的维度


方法描述

torch.flip()函数是PyTorch中用于翻转张量的函数。它可以用于在指定维度上对张量进行翻转操作

torch.flip(input,dim):第一个参数是tensor输入,第二个参数是输入的第几维度,按照维度对输入进行翻转, 反转后shape不变

参数

  • input:输入张量,可以是任意形状的张量。

  • dims:一个整数或整数列表,表示要翻转的维度。

函数签名

torch.flip(input, dims) → Tensor

第二个参数输入单维度,翻转列表内的维度

python 复制代码
import torch
x = torch.arange(120).view(2, 3, 4,5)
print('x=\n',x)
a = torch.flip(x, [0])
b = torch.flip(x, [1])
c = torch.flip(x, [2])
d = torch.flip(x, [3])
print('a=\n',a)
print('b=\n',b)
print('c=\n',c)
print('d=\n',d)

原张量显示

x=

tensor([[[[ 0, 1, 2, 3, 4],

[ 5, 6, 7, 8, 9],

[ 10, 11, 12, 13, 14],

[ 15, 16, 17, 18, 19]],

[[ 20, 21, 22, 23, 24],

[ 25, 26, 27, 28, 29],

[ 30, 31, 32, 33, 34],

[ 35, 36, 37, 38, 39]],

[[ 40, 41, 42, 43, 44],

[ 45, 46, 47, 48, 49],

[ 50, 51, 52, 53, 54],

[ 55, 56, 57, 58, 59]]],

[[[ 60, 61, 62, 63, 64],

[ 65, 66, 67, 68, 69],

[ 70, 71, 72, 73, 74],

[ 75, 76, 77, 78, 79]],

[[ 80, 81, 82, 83, 84],

[ 85, 86, 87, 88, 89],

[ 90, 91, 92, 93, 94],

[ 95, 96, 97, 98, 99]],

[[100, 101, 102, 103, 104],

[105, 106, 107, 108, 109],

[110, 111, 112, 113, 114],

[115, 116, 117, 118, 119]]]])

按照0维翻转结果(在三个方括号"[[[ ]]]"内的内容为一体 在四括号内"[[[[ ]]]]"进行倒叙排列)

a=

tensor([[[[ 60, 61, 62, 63, 64],

[ 65, 66, 67, 68, 69],

[ 70, 71, 72, 73, 74],

[ 75, 76, 77, 78, 79]],

[[ 80, 81, 82, 83, 84],

[ 85, 86, 87, 88, 89],

[ 90, 91, 92, 93, 94],

[ 95, 96, 97, 98, 99]],

[[100, 101, 102, 103, 104],

[105, 106, 107, 108, 109],

[110, 111, 112, 113, 114],

[115, 116, 117, 118, 119]]],

[[[ 0, 1, 2, 3, 4],

[ 5, 6, 7, 8, 9],

[ 10, 11, 12, 13, 14],

[ 15, 16, 17, 18, 19]],

[[ 20, 21, 22, 23, 24],

[ 25, 26, 27, 28, 29],

[ 30, 31, 32, 33, 34],

[ 35, 36, 37, 38, 39]],

[[ 40, 41, 42, 43, 44],

[ 45, 46, 47, 48, 49],

[ 50, 51, 52, 53, 54],

[ 55, 56, 57, 58, 59]]]])

按照1维翻转结果(在两个方括号"[[ ]]"内的内容为一体 在三括号"[[[ ]]]"内进行倒叙排列)

b=

tensor([[[[ 40, 41, 42, 43, 44],

[ 45, 46, 47, 48, 49],

[ 50, 51, 52, 53, 54],

[ 55, 56, 57, 58, 59]],

[[ 20, 21, 22, 23, 24],

[ 25, 26, 27, 28, 29],

[ 30, 31, 32, 33, 34],

[ 35, 36, 37, 38, 39]],

[[ 0, 1, 2, 3, 4],

[ 5, 6, 7, 8, 9],

[ 10, 11, 12, 13, 14],

[ 15, 16, 17, 18, 19]]],

[[[100, 101, 102, 103, 104],

[105, 106, 107, 108, 109],

[110, 111, 112, 113, 114],

[115, 116, 117, 118, 119]],

[[ 80, 81, 82, 83, 84],

[ 85, 86, 87, 88, 89],

[ 90, 91, 92, 93, 94],

[ 95, 96, 97, 98, 99]],

[[ 60, 61, 62, 63, 64],

[ 65, 66, 67, 68, 69],

[ 70, 71, 72, 73, 74],

[ 75, 76, 77, 78, 79]]]])

按照2维翻转结果(在一个方括号"[ ]"内的内容为一体 在双括号内"[[ ]]"进行倒叙排列)

c=

tensor([[[[ 15, 16, 17, 18, 19],

[ 10, 11, 12, 13, 14],

[ 5, 6, 7, 8, 9],

[ 0, 1, 2, 3, 4]],

[[ 35, 36, 37, 38, 39],

[ 30, 31, 32, 33, 34],

[ 25, 26, 27, 28, 29],

[ 20, 21, 22, 23, 24]],

[[ 55, 56, 57, 58, 59],

[ 50, 51, 52, 53, 54],

[ 45, 46, 47, 48, 49],

[ 40, 41, 42, 43, 44]]],

[[[ 75, 76, 77, 78, 79],

[ 70, 71, 72, 73, 74],

[ 65, 66, 67, 68, 69],

[ 60, 61, 62, 63, 64]],

[[ 95, 96, 97, 98, 99],

[ 90, 91, 92, 93, 94],

[ 85, 86, 87, 88, 89],

[ 80, 81, 82, 83, 84]],

[[115, 116, 117, 118, 119],

[110, 111, 112, 113, 114],

[105, 106, 107, 108, 109],

[100, 101, 102, 103, 104]]]])

按照3维翻转结果(在"[ ]"每个数字单独为一体 在单括号内"[ ]"进行倒叙排列)

d=

tensor([[[[ 4, 3, 2, 1, 0],

[ 9, 8, 7, 6, 5],

[ 14, 13, 12, 11, 10],

[ 19, 18, 17, 16, 15]],

[[ 24, 23, 22, 21, 20],

[ 29, 28, 27, 26, 25],

[ 34, 33, 32, 31, 30],

[ 39, 38, 37, 36, 35]],

[[ 44, 43, 42, 41, 40],

[ 49, 48, 47, 46, 45],

[ 54, 53, 52, 51, 50],

[ 59, 58, 57, 56, 55]]],

[[[ 64, 63, 62, 61, 60],

[ 69, 68, 67, 66, 65],

[ 74, 73, 72, 71, 70],

[ 79, 78, 77, 76, 75]],

[[ 84, 83, 82, 81, 80],

[ 89, 88, 87, 86, 85],

[ 94, 93, 92, 91, 90],

[ 99, 98, 97, 96, 95]],

[[104, 103, 102, 101, 100],

[109, 108, 107, 106, 105],

[114, 113, 112, 111, 110],

[119, 118, 117, 116, 115]]]])

第二个参数输入列表,则按照列表和翻转规则,依次翻转列表内的维度

python 复制代码
import torch
 
# 翻转张量
a = torch.tensor([[1, 2, 3], [4, 5, 6]])
b = torch.flip(a, dims=[0, 1])
print(b)

结果输出

tensor([[6, 5, 4],

[3, 2, 1]])

翻转逻辑

先变成

tensor([[4,5,6],

[1,2,3]])

再变成

tensor([[6,5,4],[]])

相关推荐
q5673152321 分钟前
在 Bash 中获取 Python 模块变量列
开发语言·python·bash
是萝卜干呀22 分钟前
Backend - Python 爬取网页数据并保存在Excel文件中
python·excel·table·xlwt·爬取网页数据
代码欢乐豆23 分钟前
数据采集之selenium模拟登录
python·selenium·测试工具
喵~来学编程啦30 分钟前
【论文精读】LPT: Long-tailed prompt tuning for image classification
人工智能·深度学习·机器学习·计算机视觉·论文笔记
狂奔solar1 小时前
yelp数据集上识别潜在的热门商家
开发语言·python
Tassel_YUE1 小时前
网络自动化04:python实现ACL匹配信息(主机与主机信息)
网络·python·自动化
聪明的墨菲特i1 小时前
Python爬虫学习
爬虫·python·学习
努力的家伙是不讨厌的2 小时前
解析json导出csv或者直接入库
开发语言·python·json
-Nemophilist-2 小时前
机器学习与深度学习-1-线性回归从零开始实现
深度学习·机器学习·线性回归
云空2 小时前
《Python 与 SQLite:强大的数据库组合》
数据库·python·sqlite