DD3D中估计目标速度和属性

如果你喜欢我的内容,别忘了一键三连(点赞、评论、分享)和关注哦!

整体思路

在DD3D 中我们经过head 头后,会拿到fcos2d_extra_output 特征。

py 复制代码
logits, box2d_reg, centerness, fcos2d_extra_output = self.fcos2d_head(features)

之后将fcos2d_extra_output 送入

  • 【计算attr_logits】送入一个标准的卷积层,将输入特征图转换为 max_num_attributes 个通道。核大小为 3x3,步幅为 1,填充为 1。
  • 【计算speed】送入另一个卷积层,将输入特征图转换为一个单通道输出。核大小为 3x3,步幅为 1,填充为 1。然后通过 F.relu 应用 ReLU 激活函数。

然后可以得到self.attr_logitsself.speed

py 复制代码
def forward(self, x):
    attr_logits_output = self.attr_logits(x)
    speed_output = F.relu(self.speed(x))
    return attr_logits_output, speed_output

这样定义的模型在进行前向传播时会计算两个输出:一个是 attr_logits_output,表示属性预测;另一个是 speed_output,表示速度预测并应用了 ReLU 激活函数。

示例展示

完整地展示如何实现这个操作:

我们模拟输入 fcos2d_extra_output :

py 复制代码
fcos2d_extra_output = {
    'cls_tower_out': [torch.randn(1, in_channels, 32, 32) for _ in range(4)]
}
py 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F

class MyModel(nn.Module):
    def __init__(self, in_channels, max_num_attributes):
        super(MyModel, self).__init__()
        self.attr_logits = nn.Conv2d(in_channels, max_num_attributes, kernel_size=3, stride=1, padding=1, bias=True)
        self.speed = nn.Conv2d(in_channels, 1, kernel_size=3, stride=1, padding=1, bias=True)

    def forward(self, fcos2d_extra_output):
        attr_logits = []
        speeds = []
        for x in fcos2d_extra_output['cls_tower_out']:
            attr_logits.append(self.attr_logits(x))
            speeds.append(F.relu(self.speed(x)))
        
        # Convert lists to tensors
        attr_logits = torch.stack(attr_logits)
        
        # Flatten and concatenate speed outputs
        speeds = torch.cat([x.permute(0, 2, 3, 1).reshape(-1) for x in speeds])
        
        return attr_logits, speeds

# Example usage
in_channels = 3
max_num_attributes = 10
model = MyModel(in_channels, max_num_attributes)

# Simulating fcos2d_extra_output with a list of random tensors
fcos2d_extra_output = {
    'cls_tower_out': [torch.randn(1, in_channels, 32, 32) for _ in range(4)]
}

attr_logits_output, speed_output = model(fcos2d_extra_output)

print("attr_logits_output shape:", attr_logits_output.shape)
print("speed_output shape:", speed_output.shape)
py 复制代码
attr_logits_output shape: torch.Size([4, 1, 10, 32, 32])
speed_output shape: torch.Size([4096])

模型定义:

定义了两个卷积层 attr_logits 和 speed。

前向传播:

  • 遍历 fcos2d_extra_output['cls_tower_out'],对每个张量 x 应用卷积层并将结果存储在 attr_logits 和 speeds 列表中。
  • 使用 torch.stack 将 attr_logits 列表转换为张量。
  • 使用 torch.cat 将 speeds 列表中的每个张量展平并连接成一个大的扁平化张量。

使用示例:

  • 创建了一个模拟的 fcos2d_extra_output,其中包含 4 个随机张量。
  • 通过模型的前向传播方法计算 attr_logits_output 和 speed_output。

输出形状:

  • attr_logits_output 的形状为 (4, max_num_attributes, 32, 32)。
  • speed_output 的形状为 (N,),其中 N 是所有速度张量展平后连接的总长度。

(正文完)

虽然不清楚这样的效果怎么样,但是也能有一定的预测作用。如果想效果好,fcos2d_extra_output 应该需要包含更多时序信息吧。

相关推荐
大模型真好玩14 分钟前
LangGraph智能体开发设计模式(三)——LangGraph多智能体设计模式:主管架构与分层架构
人工智能·langchain·agent
皇族崛起35 分钟前
【视觉多模态】- 3D建模尝试 I (广场3D建模,失败)
数据库·人工智能·3d·性能优化
Loo国昌42 分钟前
RAG 第一阶段:前沿技术剖析与环境搭建
人工智能·后端·语言模型·架构
哥布林学者44 分钟前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (一)序列数据与序列模型
深度学习·ai
ZKNOW甄知科技1 小时前
2025 甄知科技年度报告
运维·人工智能·低代码·ci/cd·自动化·数据库架构·敏捷流程
Keep_Trying_Go1 小时前
基于无监督backbone无需训练的类别无关目标统计CountingDINO算法详解
人工智能·python·算法·多模态·目标统计
爱思德学术1 小时前
中国计算机学会(CCF)推荐学术会议-C(软件工程/系统软件/程序设计语言):IEEE COMPSAC 2026
人工智能·区块链·软件工程
拖拖7651 小时前
打破固定输出的边界:深入解读 Pointer Networks (Ptr-Nets)
人工智能
sy134108191952 小时前
AI服务器设备中ISO系列信号隔离器应用场景
运维·服务器·人工智能
nvd112 小时前
FastMCP 开发指南: 5分钟入门
人工智能·python