【线性代数】第四章-n维向量:向量、向量组、线性表出、极大无关组与向量组的秩等

文章目录

  • [一. n维向量概念](#一. n维向量概念)
    • [1. 向量](#1. 向量)
      • [1.1. 定义](#1.1. 定义)
      • [1.2. 向量的运算规律](#1.2. 向量的运算规律)
      • [1.3. 向量的线性表示](#1.3. 向量的线性表示)
    • [2. 向量组](#2. 向量组)
      • [2.1. 向量组矩阵](#2.1. 向量组矩阵)
      • [2.2. 向量组的线性组合](#2.2. 向量组的线性组合)
      • [2.3. 向量组的线性相关](#2.3. 向量组的线性相关)
      • [2.4. 向量组的线性表出](#2.4. 向量组的线性表出)
      • [2.5. 极大线性无关组与秩](#2.5. 极大线性无关组与秩)
  • [二. 定理](#二. 定理)
    • [1. 向量的线性表出与非齐次](#1. 向量的线性表出与非齐次)
    • [2. 向量组的相关性](#2. 向量组的相关性)
    • [3. 整体与部分向量组的相关性](#3. 整体与部分向量组的相关性)
    • [4. 向量组的秩与相关性](#4. 向量组的秩与相关性)
  • [三. 向量组相关的几何意义](#三. 向量组相关的几何意义)

一. n维向量概念

1. 向量

1.1. 定义

实向量的概念:分量(坐标)、行向量、列向量

1.2. 向量的运算规律

规定行向量与列向量都按矩阵的运算规则来运算

1.3. 向量的线性表示

2. 向量组

2.1. 向量组矩阵

一个含有有限个向量的向量组总可以构成一个矩阵。

2.2. 向量组的线性组合

2.3. 向量组的线性相关

2.4. 向量组的线性表出

向量组的线性表出与向量组之间的等价

2.5. 极大线性无关组与秩

极大线性无关组的秩

二. 定理

1. 向量的线性表出与非齐次

2. 向量组的相关性

3. 整体与部分向量组的相关性

4. 向量组的秩与相关性

秩越大能够表示的就越多

定理7:

  • 如果多数向量能由少数向量表示,则多数向量一定线性相关。
  • 且多数向量的秩小于等于少数向量的秩

三. 向量组相关的几何意义

相关推荐
jerry6091 小时前
LLM笔记(六)线性代数
笔记·学习·线性代数·自然语言处理
田梓燊3 小时前
数学复习笔记 14
笔记·线性代数·矩阵
田梓燊10 小时前
数学复习笔记 15
笔记·线性代数·机器学习
Magnum Lehar18 小时前
3d游戏引擎的math矩阵实现
线性代数·矩阵·游戏引擎
HappyAcmen1 天前
线代第二章矩阵第九、十节:初等变换、矩阵的标准形、阶梯形与行最简阶梯形、初等矩阵
笔记·学习·线性代数·矩阵
人类发明了工具1 天前
【优化算法】协方差矩阵自适应进化策略(Covariance Matrix Adaptation Evolution Strategy,CMA-ES)
线性代数·算法·矩阵·cma-es
赵青临的辉1 天前
基础数学:线性代数与概率论在AI中的应用
人工智能·线性代数·概率论
Alessio Micheli3 天前
基于几何布朗运动的股价预测模型构建与分析
线性代数·机器学习·概率论
HappyAcmen3 天前
线代第二章矩阵第八节逆矩阵、解矩阵方程
笔记·学习·线性代数·矩阵
Alessio Micheli3 天前
奇怪的公式
笔记·线性代数