【线性代数】第四章-n维向量:向量、向量组、线性表出、极大无关组与向量组的秩等

文章目录

  • [一. n维向量概念](#一. n维向量概念)
    • [1. 向量](#1. 向量)
      • [1.1. 定义](#1.1. 定义)
      • [1.2. 向量的运算规律](#1.2. 向量的运算规律)
      • [1.3. 向量的线性表示](#1.3. 向量的线性表示)
    • [2. 向量组](#2. 向量组)
      • [2.1. 向量组矩阵](#2.1. 向量组矩阵)
      • [2.2. 向量组的线性组合](#2.2. 向量组的线性组合)
      • [2.3. 向量组的线性相关](#2.3. 向量组的线性相关)
      • [2.4. 向量组的线性表出](#2.4. 向量组的线性表出)
      • [2.5. 极大线性无关组与秩](#2.5. 极大线性无关组与秩)
  • [二. 定理](#二. 定理)
    • [1. 向量的线性表出与非齐次](#1. 向量的线性表出与非齐次)
    • [2. 向量组的相关性](#2. 向量组的相关性)
    • [3. 整体与部分向量组的相关性](#3. 整体与部分向量组的相关性)
    • [4. 向量组的秩与相关性](#4. 向量组的秩与相关性)
  • [三. 向量组相关的几何意义](#三. 向量组相关的几何意义)

一. n维向量概念

1. 向量

1.1. 定义

实向量的概念:分量(坐标)、行向量、列向量

1.2. 向量的运算规律

规定行向量与列向量都按矩阵的运算规则来运算

1.3. 向量的线性表示

2. 向量组

2.1. 向量组矩阵

一个含有有限个向量的向量组总可以构成一个矩阵。

2.2. 向量组的线性组合

2.3. 向量组的线性相关

2.4. 向量组的线性表出

向量组的线性表出与向量组之间的等价

2.5. 极大线性无关组与秩

极大线性无关组的秩

二. 定理

1. 向量的线性表出与非齐次

2. 向量组的相关性

3. 整体与部分向量组的相关性

4. 向量组的秩与相关性

秩越大能够表示的就越多

定理7:

  • 如果多数向量能由少数向量表示,则多数向量一定线性相关。
  • 且多数向量的秩小于等于少数向量的秩

三. 向量组相关的几何意义

相关推荐
Tipriest_4 小时前
旋转矩阵与欧拉角转换数学公式与代码详解
线性代数·矩阵
十子木5 小时前
布林克曼方程和Darcy方程的区别
线性代数·矩阵·学习方法
测试人社区-小明5 小时前
智能测试误报问题的深度解析与应对策略
人工智能·opencv·线性代数·微服务·矩阵·架构·数据挖掘
小李小李快乐不已11 小时前
数组&&矩阵理论基础
数据结构·c++·线性代数·算法·leetcode·矩阵
wa的一声哭了12 小时前
拉格朗日插值
人工智能·线性代数·算法·机器学习·计算机视觉·自然语言处理·矩阵
启明真纳14 小时前
矩阵”到底是什么
线性代数·矩阵
图先14 小时前
线性代数第二讲—矩阵
线性代数
图先14 小时前
线性代数第六讲——二次型
线性代数
AI科技星1 天前
统一场论质量定义方程:数学验证与应用分析
开发语言·数据结构·经验分享·线性代数·算法
咚咚王者1 天前
人工智能之数学基础 线性代数:第二章 向量空间
人工智能·线性代数