基于ChatGLM3的本地问答机器人部署流程

基于ChatGLM3的本地问答机器人部署流程

前言

部署完成后视频演示

复制代码
https://www.bilibili.com/video/BV1fV3XePEi4/?spm_id_from=333.1007.top_right_bar_window_dynamic.content.click&vd_source=c5d972a40f6877b991f3c691467df568

参考链接:

复制代码
https://github.com/THUDM/ChatGLM3
https://github.com/chatchat-space/Langchain-Chatchat
#微调
https://github.com/THUDM/ChatGLM3/blob/main/finetune_demo/README.md
https://zhipu-ai.feishu.cn/wiki/QiLtwks1YioOSEkCxFIcAEWNnzb
https://github.com/chatchat-space/Langchain-Chatchat/wiki/

#基于ChatGLM3的本地测井问答机器人设计文档

复制代码
https://download.csdn.net/download/qq_51985653/89406695

一、确定文件结构

1.新建文件夹储存本地模型

2.下载源码和模型

#若下载较慢也可复制链接手动下载到本地

c 复制代码
git clone https://huggingface.co/THUDM/chatglm2-6b-32k
git clone https://huggingface.co/moka-ai/m3e-base
git clone https://github.com/chatchat-space/Langchain-Chatchat.git

下载完成后的文件结构

二、Anaconda环境搭建

1.创建anaconda环境

打开anaconda终端,创建并激活环境

复制代码
conda create -n log-chat python=3.10
conda activate log-chat

2.安装相关库

cd 复制代码
conda install spacy
pip install cchardet 
pip install accelerate
pip install --upgrade pip
pip install -r requirements.txt

3.设置本地模型路径

来到llm-chat模型的configs文件夹下,修改model_config.py的内容

将LLM_MODELS设置为本地下载的模型文件

复制代码
LLM_MODELS = ["chatglm2-6b-32k"]

在MODEL_PATH 中将m3e-base设置为本地路径

将llm_model中的chatglm2-6b-32k设置为本地模型路径,若本地有其他模型文件则同理

4.启动

在anaconda终端中进行启动

复制代码
cd  D:\DeeplearningWorkplace\GPT\models\llm-chat
python startup.py --all-webui

三、构建本地知识库

1.下载并安装postgresql

2.安装c++库

3.配置向量插件

在Developer Command Prompt for Vs 2022终端进入源码目录下并执行call命令

复制代码
cd  D:\DeeplearningWorkplace\GPT\models\llm-chat
call "E:\Softwares\Microsoft Visual tudio\2022\Community\VC\Auxiliary\Build\vcvars64.bat"
复制代码
set "PGROOT=E:\Softwares\PostgreSQL\16"
git clone -branch v0.4.4 https://github.com/pgvector/pgvector.git
cd pgvector
nmake /F Makefile.win
nmake /F Makefile.win install

#打开pgAdmin4,创建数据库并安装向量插件

四、线上运行

服务器租赁:https://www.autodl.com/

复制代码
#autodl部署启动命令
cd /root/Langchain-Chatchat/
conda activate /root/pyenv
python startup.py -a

#服务器连接本地参考命令
ssh -CNg -L  8501:127.0.0.1:8501 [email protected] -p 56656

ssh -CNg -L 6006:127.0.0.1:6006 [email protected] -p 42151

#其中[email protected]和42151分别是实例中SSH指令的访问地址与端口,
#请找到自己实例的ssh指令做相应替换。
#6006:127.0.0.1:6006是指代理实例内6006端口到本地的6006端口。

添加本地文件到知识库

五、 全部命令

复制代码
#完成建立放置本地模型文件夹后在Anaconda终端执行下述命令
#其中相关路径要修改为自己对应的本地路径

#下载模型
git clone https://huggingface.co/THUDM/chatglm2-6b-32k
git clone https://huggingface.co/moka-ai/m3e-base
git clone https://github.com/chatchat-space/Langchain-Chatchat.git


#创建并激活conda环境
conda create -n log-chat python=3.10
conda activate log-chat

#在模型对应路径下安装相关库
cd  D:\DeeplearningWorkplace\GPT\models\llm-chat
conda install spacy
pip install cchardet 
pip install accelerate
pip install --upgrade pip
pip install -r requirements.txt


cd configs 
cp ./model_config.py.example  ./model_config.py
 cp ./server_config.py.example  ./server_config.py
 cp ./basic_config.py.example  ./basic_config.py
 cp ./kb_config.py.example  ./kb_config.py
cp ./prompt_config.py.example  ./prompt_config.py
#修改llm-chat配置文件使其使用本地模型
#修改model_config.py文件内容


#anaconda中启动
conda activate log-chat
cd  D:\DeeplearningWorkplace\GPT\models\llm-chat
python startup.py --all-webui



#下载postgresql
#https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
#下载visualstudio 安装c++环境
#https://visualstudio.microsoft.com/zh-hans/downloads
#在Developer Command Prompt for Vs 2022终端进入源码目录下
cd  D:\DeeplearningWorkplace\GPT\models\llm-chat

#执行call命令
call "E:\Softwares\Microsoft Visual Studio\2022\Community\VC\Auxiliary\Build\vcvars64.bat"

#执行下述命令
set "PGROOT=E:\Softwares\PostgreSQL\16"
git clone -branch v0.4.4 https://github.com/pgvector/pgvector.git
cd pgvector
nmake /F Makefile.win
nmake /F Makefile.win install

#打开pgAdmin4,创建数据库并安装向量插件
CREATE DATABASE TEST;
CREATE EXTENSION IF NOT EXISTS vector;

#打开anaconda终端
conda activate log-chat
cd  D:\DeeplearningWorkplace\GPT\models\llm-chat\configs
python -m spacy download en_core_web_sm
python -m spacy download zh_core_web_sm
pip install psycopg2
pip install pgvetor
cd  D:\DeeplearningWorkplace\GPT\models\llm-chat\
python init_database.py --recreate-vs

#启动
python startup.py -a
#之后在网页端上传知识库文件即可
相关推荐
Panesle18 小时前
阿里开源通义万相Wan2.1-VACE-14B:用于视频创建和编辑的一体化模型
人工智能·开源·大模型·文生视频·多模态·生成模型
幸福清风1 天前
【Liblib】基于LiblibAI自定义模型,总结一下Python开发步骤
ai·大模型·图片·liblib
云边有个稻草人1 天前
GpuGeek:为创新者提供灵活、快速、高效的云计算服务!
人工智能·大模型·算力·gpugeek平台·qwen3-32b
CM莫问2 天前
<论文>(微软)避免推荐域外物品:基于LLM的受限生成式推荐
人工智能·算法·大模型·推荐算法·受限生成
jc_hook2 天前
Python 接入DeepSeek
python·大模型·deepseek
TGITCIC2 天前
为何大模型都使用decoder-only?
人工智能·大模型·transformer·ai agent·大模型面试·ai面试
想要成为计算机高手2 天前
OpenVLA:开源的视觉-语言-动作模型
ai·自然语言处理·开源·大模型·视觉处理·openvla
林泽毅2 天前
PaddleNLP框架训练模型:使用SwanLab教程
人工智能·深度学习·机器学习·大模型·paddlepaddle·模型训练·swanlab
程序边界2 天前
AIGC时代 | 终端设备上的大模型轻量化部署:模型压缩与量化全栈方案
大模型
水煮蛋不加蛋2 天前
RAG 赋能客服机器人:多轮对话与精准回复
人工智能·ai·机器人·大模型·llm·rag