LeetCode1143最长公共子序列

题目描述

给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

解析

建立两个长度的动态规划数组,如果对应的字符相等,那么当前位置的最大值等于它斜上方的值加一,否则就是上方和左边的最大值。

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int len1 = text1.length();
        int len2 = text2.length();
        int[][] maxLen = new int[len1][len2];
        boolean equal = text1.charAt(0) == text2.charAt(0);

        // 初始化第一行
        for(int i = 0; i < len2; i++) {
            if(equal) {
                maxLen[0][i] = 1;
            }
            else {
                if(text1.charAt(0) == text2.charAt(i)) {
                    equal = true;
                    maxLen[0][i] = 1;
                }
            }
        }

        // 初始化第一列
        equal = text1.charAt(0) == text2.charAt(0);
        for(int i = 0; i < len1; i++) {
            if(equal) {
                maxLen[i][0] = 1;
            }
            else {
                if(text1.charAt(i) == text2.charAt(0)) {
                    equal = true;
                    maxLen[i][0] = 1;
                }
            }
        }

        for(int i = 1; i < len1; i++) {
            for(int j = 1; j < len2; j++) {
                int curMax = maxLen[i][j - 1];
                int preMax = text1.charAt(i) == text2.charAt(j) ? maxLen[i - 1][j - 1] + 1: maxLen[i - 1][j];
                int Max = Math.max(curMax, preMax);
                maxLen[i][j] = Math.min(Math.min(i + 1, j + 1), Max);
            }
        }

        return maxLen[len1 - 1][len2 - 1];
    }
}

还可以进行优化,可以将数组的长度多建立一个,就不用初始化了,另外字符数组比直接使用string会快一点。

public int longestCommonSubsequence(String text1, String text2) {
        char[] t1 = text1.toCharArray();
        char[] t2 = text2.toCharArray();
        int length1 = t1.length;
        int length2 = t2.length;
        int[][] dp = new int[length1+1][length2+1];
        for (int i = 1; i < length1 +1; i++) {
            for (int j = 1; j < length2 +1; j++) {
                if (t1[i-1] == t2[j-1]){
                    dp[i][j] = 1+ dp[i-1][j-1];
                }else {
                    dp[i][j] = Math.max(dp[i-1][j],dp[i][j-1]);
                }
            }
        }
        return dp[length1][length2];
    }
相关推荐
游是水里的游2 分钟前
【算法day19】回溯:分割与子集问题
算法
不想当程序猿_3 分钟前
【蓝桥杯每日一题】分糖果——DFS
c++·算法·蓝桥杯·深度优先
hanbarger7 分钟前
mybatis框架——缓存,分页
java·spring·mybatis
cdut_suye14 分钟前
Linux工具使用指南:从apt管理、gcc编译到makefile构建与gdb调试
java·linux·运维·服务器·c++·人工智能·python
南城花随雪。22 分钟前
单片机:实现FFT快速傅里叶变换算法(附带源码)
单片机·嵌入式硬件·算法
苹果醋327 分钟前
2020重新出发,MySql基础,MySql表数据操作
java·运维·spring boot·mysql·nginx
小蜗牛慢慢爬行28 分钟前
如何在 Spring Boot 微服务中设置和管理多个数据库
java·数据库·spring boot·后端·微服务·架构·hibernate
azhou的代码园31 分钟前
基于JAVA+SpringBoot+Vue的制造装备物联及生产管理ERP系统
java·spring boot·制造
dundunmm37 分钟前
机器学习之scikit-learn(简称 sklearn)
python·算法·机器学习·scikit-learn·sklearn·分类算法
古希腊掌管学习的神38 分钟前
[机器学习]sklearn入门指南(1)
人工智能·python·算法·机器学习·sklearn