数据挖掘--分类

数据挖掘--引论

数据挖掘--认识数据

数据挖掘--数据预处理

数据挖掘--数据仓库与联机分析处理

数据挖掘--挖掘频繁模式、关联和相关性:基本概念和方法

数据挖掘--分类

数据挖掘--聚类分析:基本概念和方法


基本概念

决策树归纳

决策树:决策树是一种类似流程图的树结构,其中每个内部结点(非树叶节点)表示在一个属性上的测试,每一个分枝代表该测试的一个输出,而每个树叶节点存放一个类标号,树的最顶层及节点是根节点

属性选择

信息熵

p为概率

先计算总的信息熵=-((p(是)log2(p(是))+p(否)log2(p(否))

属性1种类1熵=-(p(种类1是)log2(种类1是)+p(种类1否)log2(种类1否))

属性1增益=总信息熵-p(种类1)属性1种类1熵-p(种类2)属性1种类2熵

取最大的

信息增益

基尼指数

属性1种类1权重(1-(是)^2-(否)^2)+ 属性1种类2权重(1-(是)^2-(否)^2)取最小的

贝叶斯分类方法

预测类隶属关系的概率例如:一个给定的元组属于另一个特定类的概率

贝叶斯定理

朴素贝叶斯

首先确定类别,不同类别的概率

列出每个类别中各个属性的概率

p(假设某个类别1)p(属性1|某个类别1)p(属性2|某个类别1)

p(假设某个类别2)p(属性1|某个类别2)p(属性2|某个类别2)

分别比较两个的概率,那个高就是哪个类别

ROC曲线

TP(真正例)(True Positive)、FP(假正例)、TN(真负例)(True Negative)、FN(假负例)

TPR=(真正例)/(真正例+假负例)(实际为真的总数)

FPR=假正例

AdaBoost

AdaBoost是一种流行的提升算法,创建分类器的组合,每个给出一个加权投票(评委打分,不由一个人的分数决定,专家和观众占不同的比例,最算出来的才是最终分数)

流程:

1.赋予每个训练元组相同的权重1/d

2.有放回的抽样,形成一个训练集Di

3.把这个训练集拿去训练,训练出分类器Mi

4.使用Di作为检验集,看Mi的错误率error

5.错误率大于0.5就需要重新抽样形成Di,重复步骤

6.找到一个正确的,更新权重(1-error)error

7.直到所有正确的分类元组被找到,规范每个元组权重

高级方法

向后传播分类

后向传播:

1后向传播是一种神经网络学习算法

2神经网络是一组连接/输出单元,每个连接都有一个权重

多层前馈神经网络

1后向传播在多层前馈神经网络上学习

2神经网络由一个输入层和一个输出层,一个或多个隐藏层和一个输出层组成

3.有几个输出单元就有几层神经网络

4.给定足够多的训练样本,多层前馈神经网络可以逼近任何函数,也就是可以去模拟任何问题

5.网络是前馈的,权重不会回送到输入单位

6.网络是全连接的

向后传播

支持向量机

无论在什么纬度,存在一个线性或者非线性的线或者平面可以去分开两个数据集

相关推荐
Axis tech1 分钟前
SenseGlove R1外骨骼手套专为机器人遥操作设计
人工智能
沫儿笙1 分钟前
弧焊机器人节气设备
人工智能·机器人
百锦再8 分钟前
Python实现开源AI模型引入及测试全过程
人工智能·python·ai·开源·aigc·模型·自然语言
咋吃都不胖lyh14 分钟前
详解 UCB 算法的置信区间与核心逻辑(通俗 + 公式 + 实例)
人工智能·算法·机器学习
造火箭15 分钟前
普通手机使用Open-AutoGLM 感受豆包AI 手机的体验
人工智能·智能手机
Mr.Lee jack16 分钟前
【torch.compile】PyTorch Dynamo 和 Inductor 编译流程
人工智能·pytorch·深度学习
浮不上来18 分钟前
人工兔优化算法(ARO)详解:原理、实现与应用
大数据·人工智能·机器学习·优化算法
Elastic 中国社区官方博客22 分钟前
Elastic 在 AWS re:Invent:总结一年在 agentic AI 创新中的合作
大数据·人工智能·elasticsearch·搜索引擎·云计算·全文检索·aws
无心水25 分钟前
爆款实战!Vue3+Spring Boot+MySQL实现电商商品自动分类系统(含三级类目管理+规则兜底)
spring boot·mysql·分类·vue3商品分类·spring boot电商系统·三级类目管理·商品自动分类
IvorySQL26 分钟前
版本发布| IvorySQL 5.1 发布
数据库·人工智能·postgresql·开源