智谱AI GLM4开源!快速上手体验

目录

前言

在线体验

模型链接及下载

模型推理

[使用Transformers 大语言模型推理代码](#使用Transformers 大语言模型推理代码)

多模态模型推理代码

使用vLLM推理

前言

GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本。 在语义、数学、推理、代码和知识等多方面的数据集测评中,GLM-4-9B 及其人类偏好对齐的版本 GLM-4-9B-Chat 均表现出较高的性能。GLM-4-9B 模型具备了更强大的推理性能、更长的上下文处理能力、多语言、多模态和 All Tools 等突出能力。GLM-4-9B 系列模型包括:基础版本 GLM-4-9B(8K)、对话版本 GLM-4-9B-Chat(128K)、超长上下文版本 GLM-4-9B-Chat-1M(1M)和多模态版本 GLM-4V-9B-Chat(8K)。

如下为GLM-4-9B-Chat模型的经典任务评测结果:

在线体验

魔搭社区使用自研开源的推理加速引擎dash-infer也转换了模型格式,支持在CPU上运行,并搭建了体验链接

魔搭社区汇聚各领域最先进的机器学习模型,提供模型探索体验、推理、训练、部署和应用的一站式服务。https://modelscope.cn/studios/dash-infer/GLM-4-Chat-DashInfer-Demo同时创空间体验也支持vLLM推理,体验链接:

魔搭社区汇聚各领域最先进的机器学习模型,提供模型探索体验、推理、训练、部署和应用的一站式服务。https://modelscope.cn/studios/ZhipuAI/glm-4-9b-chat-vllm/summary

效果体验

语义创作:

数学:

<计算题>

<应用题>

推理:

模型链接及下载

GLM-4-9B-Chat

模型链接:

https://modelscope.cn/models/ZhipuAI/glm-4-9b-chat/summary

GLM-4-9B-Chat-1M

模型链接:

https://modelscope.cn/models/ZhipuAI/glm-4-9b-chat-1m/summary

glm-4-9b

模型链接:

https://modelscope.cn/models/ZhipuAI/glm-4-9b/summary

glm-4v-9b

模型链接:

https://modelscope.cn/models/ZhipuAI/glm-4v-9b/summary

模型weights下载

复制代码
from modelscope import snapshot_download
model_dir = snapshot_download("ZhipuAI/glm-4-9b-chat")

模型推理

使用Transformers 大语言模型推理代码

复制代码
import torch
from modelscope import AutoModelForCausalLM, AutoTokenizer

device = "cuda"

tokenizer = AutoTokenizer.from_pretrained("ZhipuAI/glm-4-9b-chat",trust_remote_code=True)

query = "你好"

inputs = tokenizer.apply_chat_template([{"role": "user", "content": query}],
                                       add_generation_prompt=True,
                                       tokenize=True,
                                       return_tensors="pt",
                                       return_dict=True
                                       )

inputs = inputs.to(device)
model = AutoModelForCausalLM.from_pretrained(
    "ZhipuAI/glm-4-9b-chat",
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True
).to(device).eval()

gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
with torch.no_grad():
    outputs = model.generate(**inputs, **gen_kwargs)
    outputs = outputs[:, inputs['input_ids'].shape[1]:]
    print(tokenizer.decode(outputs[0], skip_special_tokens=True))

显存占用:

多模态模型推理代码

复制代码
import torch
from PIL import Image
from modelscope import AutoModelForCausalLM, AutoTokenizer

device = "cuda"

tokenizer = AutoTokenizer.from_pretrained("ZhipuAI/glm-4v-9b", trust_remote_code=True)

query = '这样图片里面有几朵花?'
image = Image.open("/mnt/workspace/玫瑰.jpeg").convert('RGB')
inputs = tokenizer.apply_chat_template([{"role": "user", "image": image, "content": "这样图片里面有几朵花?"}],
                                       add_generation_prompt=True, tokenize=True, return_tensors="pt",
                                       return_dict=True)  # chat mode

inputs = inputs.to(device)
model = AutoModelForCausalLM.from_pretrained(
    "ZhipuAI/glm-4v-9b",
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True
).to(device).eval()

gen_kwargs = {"max_length": 500, "do_sample": True, "top_k": 1}
with torch.no_grad():
    outputs = model.generate(**inputs, **gen_kwargs)
    outputs = outputs[:, inputs['input_ids'].shape[1]:]
    print(tokenizer.decode(outputs[0]))

使用vLLM推理

复制代码
from modelscope import AutoTokenizer
from vllm import LLM, SamplingParams
from modelscope import snapshot_download
# GLM-4-9B-Chat
max_model_len, tp_size = 131072, 1
model_name = snapshot_download("ZhipuAI/glm-4-9b-chat")
prompt = '你好'

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
llm = LLM(
    model=model_name,
    tensor_parallel_size=tp_size,
    max_model_len=max_model_len,
    trust_remote_code=True,
    enforce_eager=True,
)
stop_token_ids = [151329, 151336, 151338]
sampling_params = SamplingParams(temperature=0.95, max_tokens=1024, stop_token_ids=stop_token_ids)

inputs = tokenizer.apply_chat_template([{'role': 'user', 'content': prompt}], add_generation_prompt=True)[0]
outputs = llm.generate(prompt_token_ids=[inputs], sampling_params=sampling_params)

generated_text = [output.outputs[0].text for output in outputs]
print(generated_text)
相关推荐
l12345sy11 分钟前
Day16_【机器学习—模型拟合问题】
人工智能·机器学习
Ai工具分享24 分钟前
让模糊物体变清晰的视频AI:快速提升画质指南
人工智能·音视频
霍格沃兹测试开发学社测试人社区25 分钟前
MCP零基础学习(7)|实战指南:构建论文分析智能体
人工智能·测试工具
开开心心就好1 小时前
PDF转长图工具,一键多页转图片
java·服务器·前端·数据库·人工智能·pdf·推荐算法
l12345sy2 小时前
Day16_【机器学习概述】
人工智能·机器学习
大千AI助手2 小时前
InstructGPT:使用人类反馈训练语言模型以遵循指令
人工智能·gpt·语言模型·自然语言处理·rlhf·指令微调·模型对齐
机器之心2 小时前
时代2025 AI百人榜出炉:任正非、梁文锋、王兴兴、彭军、薛澜等入选,华人影响力爆棚
人工智能·openai
机器之心2 小时前
谢赛宁回忆七年前OpenAI面试:白板编程、五小时会议,面完天都黑了
人工智能·openai
Json_2 小时前
使用springboot开发-AI智能体平台管理系统,统一管理各个平台的智能体并让智能体和AI语音设备通信,做一个属于自己的小艾同学~
人工智能·spring boot·openai
硬核隔壁老王2 小时前
收藏!Agentic RAG实战:从入门到智能问答系统完整实现指南
人工智能·程序员·llm