[书生·浦语大模型实战营]——LMDeploy 量化部署 LLM 实践

1.基础作业

1.1配置 LMDeploy 运行环境

创建开发机

创建新的开发机,选择镜像Cuda12.2-conda;选择10% A100*1GPU;点击"立即创建"。注意请不要选择Cuda11.7-conda的镜像,新版本的lmdeploy会出现兼容性问题。其他和之前一样,不赘述。

创建conda环境

c 复制代码
studio-conda -t lmdeploy -o pytorch-2.1.2

安装LMDeploy

c 复制代码
#激活虚拟环境
conda activate lmdeploy
#安装0.3.0的imdeploy
pip install lmdeploy[all]==0.3.0

1.2以命令行方式与 InternLM2-Chat-1.8B 模型对话


2.进阶作业

2.1 设置KV Cache最大占用比例为0.4,开启W4A16量化,以命令行方式与模型对话。


2.2 以API Server方式启动 lmdeploy,开启 W4A16量化,调整KV Cache的占用比例为0.4,分别使用命令行客户端与Gradio网页客户端与模型对话。

命令行:

网页客户端:

2.3 使用W4A16量化,调整KV Cache的占用比例为0.4,使用Python代码集成的方式运行internlm2-chat-1.8b模型。

2.4 使用 LMDeploy 运行视觉多模态大模型 llava gradio demo。


相关推荐
daad7772 小时前
USB_抓包
linux·运维·服务器
诚丞成3 小时前
指引代码方向的恒星:在代码的诗行中徜徉,Git工具的深邃与魅力
linux
Clarence Liu3 小时前
用大白话讲解人工智能(4) Softmax回归:AI如何给选项“打分排序“
人工智能·数据挖掘·回归
教男朋友学大模型3 小时前
Agent效果该怎么评估?
大数据·人工智能·经验分享·面试·求职招聘
未来之窗软件服务3 小时前
服务器运维(四十)日服务器linux-ps分析工具—东方仙盟
linux·运维·服务器·服务器运维·仙盟创梦ide·东方仙盟
hit56实验室3 小时前
AI4Science开源汇总
人工智能
CeshirenTester3 小时前
9B 上端侧:多模态实时对话,难点其实在“流”
开发语言·人工智能·python·prompt·测试用例
Starry_hello world3 小时前
Python (2)
python
relis3 小时前
Tiny-GPU 仿真与静态分析完整指南:Pyslang + Cocotb 实战
人工智能
njsgcs3 小时前
agentscope怎么在对话的时候调用记忆的
人工智能