[书生·浦语大模型实战营]——LMDeploy 量化部署 LLM 实践

1.基础作业

1.1配置 LMDeploy 运行环境

创建开发机

创建新的开发机,选择镜像Cuda12.2-conda;选择10% A100*1GPU;点击"立即创建"。注意请不要选择Cuda11.7-conda的镜像,新版本的lmdeploy会出现兼容性问题。其他和之前一样,不赘述。

创建conda环境

c 复制代码
studio-conda -t lmdeploy -o pytorch-2.1.2

安装LMDeploy

c 复制代码
#激活虚拟环境
conda activate lmdeploy
#安装0.3.0的imdeploy
pip install lmdeploy[all]==0.3.0

1.2以命令行方式与 InternLM2-Chat-1.8B 模型对话


2.进阶作业

2.1 设置KV Cache最大占用比例为0.4,开启W4A16量化,以命令行方式与模型对话。


2.2 以API Server方式启动 lmdeploy,开启 W4A16量化,调整KV Cache的占用比例为0.4,分别使用命令行客户端与Gradio网页客户端与模型对话。

命令行:

网页客户端:

2.3 使用W4A16量化,调整KV Cache的占用比例为0.4,使用Python代码集成的方式运行internlm2-chat-1.8b模型。

2.4 使用 LMDeploy 运行视觉多模态大模型 llava gradio demo。


相关推荐
苏渡苇4 分钟前
轻量化AI落地:Java + Spring Boot 实现设备异常预判
java·人工智能·spring boot·后端·网络协议·tcp/ip·spring
大熊背5 分钟前
APEX系统中为什么 不用与EV0的差值计算曝光参数调整量
人工智能·算法·apex·自动曝光
小雨中_8 分钟前
2.4 贝尔曼方程与蒙特卡洛方法
人工智能·python·深度学习·机器学习·自然语言处理
czxyvX10 分钟前
009-Linux程序地址空间
linux
苏宸啊11 分钟前
进程的概念
linux
Chiang_Yuhsin11 分钟前
【程序人生-Hello‘s P2P】
人工智能
yuezhilangniao11 分钟前
程序人生-杂谈-简单对比一下 学霸和linux科学设计
linux·程序人生·职场和发展
只想恰口饭13 分钟前
程序人生-Hello’s P2P
linux·c语言·ubuntu
hoperest17 分钟前
程序人生-Hello‘s P2P
linux·c语言·程序人生·ubuntu
quixoticalYan18 分钟前
哈工大计算机系统大作业报告-程序人生-Hello’s P2P
linux·windows·程序人生·ubuntu·课程设计