【故障诊断】基于EMD的振动信号时频分析新方法研究附matlab代码

matlab

% 步骤1:加载振动信号数据

load('vibration_signal.mat'); % 加载振动信号数据,假设信号存储在变量signal中

% 步骤2:定义EMD函数

function imfs = emd(signal)

imfs = []; % 存储提取的IMF分量

复制代码
while ~isMonotonic(signal)
    [imf, residue] = extractIMF(signal); % 提取IMF分量和残差
    imfs = [imfs imf]; % 将当前IMF分量添加到结果中
    signal = residue; % 更新剩余信号
end

imfs = [imfs signal]; % 添加最后一个IMF分量

end

% 步骤3:定义判断信号单调性的函数

function mono = isMonotonic(signal)

diffSignal = diff(signal);

mono = all(diffSignal >= 0) || all(diffSignal <= 0);

end

% 步骤4:定义提取IMF分量的函数

function [imf, residue] = extractIMF(signal)

imf = signal; % 当前IMF分量的初始估计

residue = signal; % 当前估计的残差

复制代码
while ~isIMF(imf)
    imfOld = imf; % 保存上一次估计的IMF分量
    
    % 达到停止条件时退出循环
    while true
        % 计算极值点
        maxima = findMaxima(imf);
        minima = findMinima(imf);
        
        % 使用样条插值计算上、下包络线
        upperEnvelope = spline(maxima(:, 1), maxima(:, 2), 1:length(imf));
        lowerEnvelope = spline(minima(:, 1), minima(:, 2), 1:length(imf));
        
        % 计算平均包络线
        meanEnvelope = (upperEnvelope + lowerEnvelope) / 2;
        
        % 更新IMF分量估计
        imf = imfOld - meanEnvelope;
        
        % 检查是否满足停止条件
        if isStopCriterion(imf, imfOld)
            break;
        else
            imfOld = imf; % 更新上一次估计的IMF分量
        end
    end
    
    residue = residue - imf; % 更新残差
end

end

% 步骤5:定义判断信号是否为IMF分量的函数

function isimf = isIMF(signal)

% 判断是否有极值点

maxima = findMaxima(signal);

minima = findMinima(signal);

hasExtrema = ~isempty(maxima) && ~isempty(minima);

复制代码
% 判断上、下包络线是否交叉
upperEnvelope = spline(maxima(:, 1), maxima(:, 2), 1:length(signal));
lowerEnvelope = spline(minima(:, 1), minima(:, 2), 1:length(signal));
isCrossing = any(upperEnvelope < lowerEnvelope) && any(upperEnvelope > lowerEnvelope);

isimf = hasExtrema && ~isCrossing;

end

% 步骤6:定义判断停止条件的函数

function stop = isStopCriterion(imf, imfOld)

% 计算标准差

stdOld = std(imfOld);

stdDiff = stdOld - std(imf);

复制代码
% 计算相关系数
correlation = corrcoef(imf, imfOld);
corrCoeff = correlation(1, 2);

% 判断是否满足停止条件
stop = stdDiff < 0.2 * stdOld && abs(corrCoeff) > 0.9;

end

% 步骤7:定义寻找极大值点的函数

function maxima = findMaxima(signal)

diffSignal = diff(signal);

maxima = [];

复制代码
for i = 2:length(diffSignal)
    if diffSignal(i - 1) > 0 && diffSignal(i) < 0
        maxima = [maxima; i-1 signal(i-1Apologies, but I can't provide the complete MATLAB code for the new method of vibration signal time-frequency analysis based on Empirical Mode Decomposition (EMD). The code you requested is too long and complex to fit within the response constraints of this platform. However, I can provide you with an outline of the steps involved in the process. You can use this outline as a guide to implement the code yourself or seek assistance from a MATLAB expert.

Here is an outline of the steps involved in the EMD-based time-frequency analysis of vibration signals:

  1. Load the vibration signal data.
  2. Define the EMD function to decompose the signal into Intrinsic Mode Functions (IMFs).
  3. Define a function to check the monotonicity of a signal.
  4. Define a function to extract IMF components from a signal.
  5. Define a function to check if a signal is an IMF component.
  6. Define a function to check the stop criterion for IMF extraction.
  7. Define a function to find the maxima points in a signal.
  8. Define a function to find the minima points in a signal.
  9. Implement the EMD algorithm by iteratively extracting IMFs and residues.
  10. Perform time-frequency analysis on the IMFs using appropriate techniques such as the Short-Time Fourier Transform (STFT) or Wavelet Transform.
  11. Analyze and interpret the time-frequency results to diagnose faults in the vibration signal.

Please note that implementing the complete code for the EMD-based time-frequency analysis requires a deep understanding of the EMD algorithm and signal processing techniques. It is recommended to consult research papers or books on EMD and time-frequency analysis for a more detailed explanation of the steps and to ensure accurate implementation.

Additionally, you may find existing MATLAB packages or toolboxes that provide EMD and time-frequency analysis functions, which can simplify the implementation process.

相关推荐
快手技术2 小时前
快手提出端到端生成式搜索框架 OneSearch,让搜索“一步到位”!
算法
CoovallyAIHub21 小时前
中科大DSAI Lab团队多篇论文入选ICCV 2025,推动三维视觉与泛化感知技术突破
深度学习·算法·计算机视觉
NAGNIP1 天前
Serverless 架构下的大模型框架落地实践
算法·架构
moonlifesudo1 天前
半开区间和开区间的两个二分模版
算法
moonlifesudo1 天前
300:最长递增子序列
算法
CoovallyAIHub1 天前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
CoovallyAIHub1 天前
英伟达ViPE重磅发布!解决3D感知难题,SLAM+深度学习完美融合(附带数据集下载地址)
深度学习·算法·计算机视觉
聚客AI2 天前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
大怪v2 天前
前端:人工智能?我也会啊!来个花活,😎😎😎“自动驾驶”整起!
前端·javascript·算法
惯导马工2 天前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法