【YOLOv5进阶】——修改网络结构(以C2f模块为例)

一、站在巨人的肩膀上

这里我们借鉴YOLOv8源码:

上期说到,对于网络模块定义详情在common.py 这个文件,如Conv、CrossConv、C3f等。本期要修改的需要参考YOLOv8里的C2f模块,它定义在YOLOv8的module文件夹的block.py 文件里(与common.py一样),源码链接如下:

YOLOv8源码https://github.com/ultralytics/ultralytics下载Code下的压缩包即可:

需要的文件路径如下(可能该源码更新了,位置和博主讲的还不太一样):

C2f模块大概在第200行左右,如下就是我们后面修改要借鉴的:

python 复制代码
class C2f(nn.Module):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        """Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
        expansion.
        """
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))

    def forward(self, x):
        """Forward pass through C2f layer."""
        y = list(self.cv1(x).chunk(2, 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

    def forward_split(self, x):
        """Forward pass using split() instead of chunk()."""
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

二、开始修改网络结构

  • model/common.py加入新增的C2f模块,直接复制粘贴如下:

这段代码里面的第167行处的Bottleneck类是YOLOv8独属定义的,需要也把它的定义复制过来:

但是由于原本common.py里也有该类,为了避免名字冲突Bottleneck加上前缀C2f变为C2fBottleneck:


  • model/yolo.py设定网络结构的传参细节

传参细节可以参照原本存在的C3模块的属性,只要传C3x模块的地方加上C2f即可,找到yolo.py里的parse_model函数,如下在319行和325行的C3x后加入了C2f:


  • model/yolov5s.yaml设定现有模型结构配置文件

需要把代码中的C3模块都替换为C2f(backbone一定要改,head里可改可不改),这里改动较多,我们可以保留yolov5s.yaml 原文件,复制一份命名为yolov5s-c2f.yaml

  • train.py训练时指定模型结构配置文件

下面是原始的parse_opt函数(部分):

需要将第二个cfg参数(模型结构配置文件指定参数),修改我们新的yaml文件路径:

博主也解释了这里即使更改了cfg配置文件,上面的预训练的权重weights还是可以用原本的初始权重yolov5.pt文件的!!!!

这里的第三个参数data可见还是前几期博客试验的《名侦探柯南》人物的识别mingke.yaml文件!


  • 开启训练,可见训练时从common.py文件加载的模块不再有C3,而是换成了C2f模块:

也可见从预训练权重文件yolov5s.pt中加载项时没全加载,325项中加载了271项,说明可以迁移一部分(借鉴)原本的权重文件,若不指定完全从头开始训练效果可能不那么好:

也可自行观察训练时更多的有趣点,比如前几次跌代(epoch)的mAP指标都是0,是因为加入刚来的C2f模块后模型与随机初始化的权重很多对不上,经过一段时间的迭代学习后就可发现mAP值逐渐出现数值!!

100次迭代后结果如下,结果保存在runs\train\exp10文件夹:

下面是原始网络结构的训练结果,这里可见替换C2f模块后,训练指标没有增加反而减小,说明不是修改了就一定会有提高,还需要多方考虑,适合才是最好------这就是"炼丹"!!


往期精彩

STM32专栏(9.9)http://t.csdnimg.cn/A3BJ2

OpenCV-Python专栏(9.9)http://t.csdnimg.cn/jFJWe

AI底层逻辑专栏(9.9)http://t.csdnimg.cn/6BVhM

机器学习专栏(免费)http://t.csdnimg.cn/ALlLlSimulink专栏(免费)http://t.csdnimg.cn/csDO4电机控制专栏(免费)http://t.csdnimg.cn/FNWM7

相关推荐
MUTA️16 小时前
ultalytics代码中模型接收多层输入的处理
深度学习·算法·yolo·机器学习·计算机视觉
巷9551 天前
YOLO v3:目标检测领域的质变性飞跃
人工智能·yolo·目标检测
软件派1 天前
基于YOLO算法的目标检测系统实现指南
算法·yolo·目标检测
巷9552 天前
YOLO v2:目标检测领域的全面性进化
人工智能·yolo·目标检测
深度学习机器学习2 天前
计算机视觉最不卷的方向:三维重建学习路线梳理
人工智能·深度学习·学习·yolo·目标检测·机器学习·计算机视觉
struggle20252 天前
适用于 iOS 的 开源Ultralytics YOLO:应用程序和 Swift 软件包,用于在您自己的 iOS 应用程序中运行 YOLO
yolo·ios·开源·app·swift
weixin_377634843 天前
【YOLO模型】参数全面解读
yolo
武乐乐~3 天前
论文精读:YOLO-UniOW: Efficient Universal Open-World Object Detection
人工智能·yolo·目标检测
DragonnAi3 天前
【目标检测标签转换工具】YOLO 格式与 Pascal VOC XML 格式的互转详解(含完整代码)
xml·yolo·目标检测
彭祥.4 天前
大疆无人机搭载树莓派进行目标旋转检测
yolo·目标检测·目标跟踪