千问Qwen7B chat:本地部署及网页端使用

基于前面的安装经验,千问大模型的本地部署并不算难,主要时间用在大模型文件的下载上。同时系统运行对硬件也有较高的要求,本机的硬件配置为N卡3060,显存12G。

  1. 使用conda创建虚拟环境,主要版本如下:

Python 3.9.18

CUDA 12.1

pytorch 2.2.2

  1. 克隆代码到本地

git clone https://github.com/QwenLM/Qwen.git

  1. 进入Qwen目录,执行安装命令

安装依赖

pip install -r requirements.txt

安装 web_demo 依赖

pip install -r requirements_web_demo.txt

  1. 运行命令

python web_demo.py --server-port 8087 --server-name "0.0.0.0"

会下载很多模型文件,需要一点时间。下载完成后启动界面如下

在输入框里输入沟通内容"你是谁"。我们看一下后台输出:

相关推荐
吴佳浩1 天前
Langchain 浅出
python·langchain·llm
山顶夕景1 天前
【RL】Does RLVR enable LLMs to self-improve?
深度学习·llm·强化学习·rlvr
AndrewHZ1 天前
【图像处理基石】如何使用大模型进行图像处理工作?
图像处理·人工智能·深度学习·算法·llm·stablediffusion·可控性
mwq301231 天前
LLM 推理的“显存墙”与“通信墙”:从显存分布到部署原则
llm
rgb2gray1 天前
增强城市数据分析:多密度区域的自适应分区框架
大数据·python·机器学习·语言模型·数据挖掘·数据分析·llm
Seal软件1 天前
GPUStack v2:推理加速释放算力潜能,开源重塑大模型推理下半场
llm·gpu
信也科技布道师FTE1 天前
当AMIS遇见AI智能体:如何为低代码开发装上“智慧大脑”?
人工智能·低代码·llm
智泊AI1 天前
建议所有初学者都这样去微调大模型!
llm
大模型教程1 天前
智能体变笨了是什么原因? 怎么优化?
程序员·llm·agent
大模型教程1 天前
检索增强生成(RAG)与大语言模型微调(Fine-tuning)的差异、优势及使用场景详解
程序员·llm·agent