清华大学综述:基于 Transformer 的大语言模型

语言建模作为语言模型(LMs)的基本功能,涉及对单词序列的建模以及预测后续单词的分布。

近年来,研究人员发现,扩大语言模型的规模不仅增强了它们的语言建模能力,而且还产生了处理传统NLP任务之外更复杂任务的新兴能力。

这些扩大规模的语言模型被称为大型语言模型(LLMs)。

主流的LLMs基于Transformer架构设计

具体来说,一个典型的Transformer架构由多个堆叠的Transformer块组成。

通常,一个Transformer块由一个多头自注意力(MHSA)模块、一个前馈网络(FFN)和一个层归一化(LN)操作组成。

对于每个块,它接收前一个块的输出特征作为输入,并通过每个子模块传递特征以获得输出。

特别地,在第一个块之前,使用分词器将原始输入句子转换为一系列标记,随后的嵌入层用于将标记转换为输入特征。

然后,将额外的位置嵌入添加到输入特征中,以编码每个输入标记的顺序。

Transformer架构的核心概念是自注意力机制,它在MHSA模块中采用。具体来说,表示输入特征为X = [x1, x2, ..., xn],MHSA模块对它们进行线性投影并获得一组查询Q、键K和值V,如公式所示:

其中WQi、WKi和WVi分别是第i个头的投影矩阵。

然后自注意力操作应用于每组(Qi, Ki, Vi)并得到第i个头的特征Zi,如公式所示:

其中dk是查询(键)的维度。

注意,自注意力操作包含矩阵乘法操作,其计算复杂度是对输入长度的二次方。最后,MHSA模块将所有注意力头的特征连接起来,并通过线性投影形成其输出Z,如公式所示:

其中WO是投影矩阵。

可以看到,自注意力机制允许模型识别不同输入部分的重要性,无论距离如何,并且可以捕捉输入句子中的长距离依赖和复杂关系。

Transformer块中的另一个重要模块是FFN。

通常,FFN位于MHSA模块之后,由两个带有非线性激活函数的线性变换层组成。它接收MHSA模块的输出特征X,如公式所示:

其中W1和W2表示两个线性层的权重矩阵,σ(·)表示激活函数。

本文翻译自清华大学最新成果论文:《A Survey on Efficient Inference for Large Language Models 》,arxiv.org/pdf/2404.14...


更多关于大模型的介绍,可以查看《Transformer最后一公里》专栏。

相关推荐
十八岁讨厌编程20 小时前
【算法训练营 · 补充】LeetCode Hot100(中)
算法·leetcode
橘颂TA20 小时前
【剑斩OFFER】算法的暴力美学——最小覆盖字串
算法·c/c++·就业
wearegogog12320 小时前
基于混合蛙跳算法和漏桶算法的无线传感器网络拥塞控制与分簇新方法
网络·算法
Tiandaren21 小时前
大模型应用03 || 函数调用 Function Calling || 概念、思想、流程
人工智能·算法·microsoft·数据分析
2301_7951672021 小时前
玩转Rust高级应用 如何进行理解Refutability(可反驳性): 模式是否会匹配失效
开发语言·算法·rust
小当家.1051 天前
[LeetCode]Hot100系列.贪心总结+思想总结
算法·leetcode·职场和发展
墨雪不会编程1 天前
数据结构—排序算法篇二
数据结构·算法·排序算法
ShineWinsu1 天前
对于数据结构:堆的超详细保姆级解析—上
数据结构·c++·算法·计算机·二叉树·顺序表·
im_AMBER1 天前
Leetcode 46
c语言·c++·笔记·学习·算法·leetcode
努力学算法的蒟蒻1 天前
day09(11.6)——leetcode面试经典150
算法·leetcode·职场和发展