glm-4v-9b 部署

glm-4v-9b 模型文件地址

GLM-4 仓库文件地址

官方测试 硬件配置和系统要求

官方测试硬件信息:

  • OS: Ubuntu 22.04
  • Memory: 512GB
  • Python: 3.12.3
  • CUDA Version: 12.3
  • GPU Driver: 535.104.05
  • GPU: NVIDIA A100-SXM4-80GB * 8

最低硬件要求

如果希望运行官方提供的最基础代码 (transformers 后端) 需要:

  • Python >= 3.10
  • 内存不少于 32 GB

如果希望运行官方提供的本文件夹的所有代码,还需要:

  • Linux 操作系统 (Debian 系列最佳)
  • 大于 8GB 显存的,支持 CUDA 或者 ROCM 并且支持 BF16 推理的 GPU 设备。(FP16 精度无法训练,推理有小概率出现问题)
一、Codestral-22B-v0.1环境安装

1、硬件配置

用两张4090D

2、配置环境

建议最好自己新建一个conda环境

复制代码
conda create -n glm4v python=3.10 -y

conda activate glm4v

unzip GLM-4-main.zip

3、安装依赖

复制代码
pip install -r requirements.txt -i https://pypi.mirrors.ustc.edu.cn/simple 

pip install gradio==3.40.0 -i https://pypi.mirrors.ustc.edu.cn/simple

/root/autodl-tmp/glm-4v-9b

基础功能调用

除非特殊说明,本文件夹所有 demo 并不支持 Function Call 和 All Tools 等进阶用法

使用 transformers 后端代码

  • 使用命令行与 GLM-4-9B 模型进行对话。

    python trans_cli_demo.py # GLM-4-9B-Chat

    python trans_cli_vision_demo.py # GLM-4V-9B

  • 使用 Gradio 网页端与 GLM-4-9B-Chat 模型进行对话。

    python trans_web_demo.py

  • 使用 Batch 推理。

    python cli_batch_request_demo.py

使用 vLLM 后端代码

  • 使用命令行与 GLM-4-9B-Chat 模型进行对话。

    python vllm_cli_demo.py

  • 自行构建服务端,并使用 OpenAI API 的请求格式与 GLM-4-9B-Chat 模型进行对话。本 demo 支持 Function Call 和 All Tools功能。

启动服务端:

复制代码
python openai_api_server.py

客户端请求:

复制代码
python openai_api_request.py
相关推荐
大模型最新论文速读2 小时前
在Text-to-SQL任务中应用过程奖励模型
数据库·人工智能·sql·深度学习·语言模型·自然语言处理
明明跟你说过2 小时前
深入理解Embedding Models(嵌入模型):从原理到实战(下)
人工智能·语言模型·embedding
modest —YBW3 小时前
Ollama+OpenWebUI+docker完整版部署,附带软件下载链接,配置+中文汉化+docker源,适合内网部署,可以局域网使用
人工智能·windows·docker·语言模型·llama
L_cl3 小时前
【NLP 71、常见大模型的模型结构对比】
自然语言处理
知来者逆6 小时前
AI 在模仿历史语言方面面临挑战:大型语言模型在生成历史风格文本时的困境与研究进展
人工智能·深度学习·语言模型·自然语言处理·chatgpt
qq_1893704910 小时前
自然语言处理NLP中的连续词袋(Continuous bag of words,CBOW)方法、优势、作用和程序举例
人工智能·自然语言处理·连续词袋
洁洁!10 小时前
从零开始在亚马逊云科技 EC2上部署DeepSeek R1大语言模型:完整实战指南
服务器·科技·语言模型
学算法的程霖13 小时前
TGRS | FSVLM: 用于遥感农田分割的视觉语言模型
人工智能·深度学习·目标检测·机器学习·计算机视觉·自然语言处理·遥感图像分类
一点.点15 小时前
SafeDrive:大语言模型实现自动驾驶汽车知识驱动和数据驱动的风险-敏感决策——论文阅读
人工智能·语言模型·自动驾驶
concisedistinct15 小时前
如何评价大语言模型架构 TTT ?模型应不应该永远“固定”在推理阶段?模型是否应当在使用时继续学习?
人工智能·语言模型·大模型