glm-4v-9b 部署

glm-4v-9b 模型文件地址

GLM-4 仓库文件地址

官方测试 硬件配置和系统要求

官方测试硬件信息:

  • OS: Ubuntu 22.04
  • Memory: 512GB
  • Python: 3.12.3
  • CUDA Version: 12.3
  • GPU Driver: 535.104.05
  • GPU: NVIDIA A100-SXM4-80GB * 8

最低硬件要求

如果希望运行官方提供的最基础代码 (transformers 后端) 需要:

  • Python >= 3.10
  • 内存不少于 32 GB

如果希望运行官方提供的本文件夹的所有代码,还需要:

  • Linux 操作系统 (Debian 系列最佳)
  • 大于 8GB 显存的,支持 CUDA 或者 ROCM 并且支持 BF16 推理的 GPU 设备。(FP16 精度无法训练,推理有小概率出现问题)
一、Codestral-22B-v0.1环境安装

1、硬件配置

用两张4090D

2、配置环境

建议最好自己新建一个conda环境

复制代码
conda create -n glm4v python=3.10 -y

conda activate glm4v

unzip GLM-4-main.zip

3、安装依赖

复制代码
pip install -r requirements.txt -i https://pypi.mirrors.ustc.edu.cn/simple 

pip install gradio==3.40.0 -i https://pypi.mirrors.ustc.edu.cn/simple

/root/autodl-tmp/glm-4v-9b

基础功能调用

除非特殊说明,本文件夹所有 demo 并不支持 Function Call 和 All Tools 等进阶用法

使用 transformers 后端代码

  • 使用命令行与 GLM-4-9B 模型进行对话。

    python trans_cli_demo.py # GLM-4-9B-Chat

    python trans_cli_vision_demo.py # GLM-4V-9B

  • 使用 Gradio 网页端与 GLM-4-9B-Chat 模型进行对话。

    python trans_web_demo.py

  • 使用 Batch 推理。

    python cli_batch_request_demo.py

使用 vLLM 后端代码

  • 使用命令行与 GLM-4-9B-Chat 模型进行对话。

    python vllm_cli_demo.py

  • 自行构建服务端,并使用 OpenAI API 的请求格式与 GLM-4-9B-Chat 模型进行对话。本 demo 支持 Function Call 和 All Tools功能。

启动服务端:

复制代码
python openai_api_server.py

客户端请求:

复制代码
python openai_api_request.py
相关推荐
翱翔的苍鹰1 天前
大语言模型发展历程
人工智能·语言模型·自然语言处理
野犬寒鸦1 天前
从零起步学习并发编程 || 第五章:悲观锁与乐观锁的思想与实现及实战应用与问题
java·服务器·数据库·学习·语言模型
陈天伟教授1 天前
人工智能应用- 语言理解:08.大语言模型
人工智能·语言模型·自然语言处理
爱吃羊的老虎1 天前
【大模型开发】学习笔记一:RAG & LangChain 实战核心笔记
人工智能·笔记·语言模型·langchain
❀͜͡傀儡师1 天前
基于大语言模型的简历分析和模拟面试系统
人工智能·语言模型·面试
洁洁!1 天前
JDK21→25升级实战:飞算Java AI专业版帮我自动适配了哪些坑?
人工智能·科技·语言模型·数据分析·飞算javaai·ai开发工具
Funny_AI_LAB1 天前
GLM-OCR发布:性能SOTA,超越PaddleOCR-VL-1.5?
人工智能·计算机视觉·语言模型·ocr
m0_603888711 天前
Language Models Struggle to Use Representations Learned In-Context
人工智能·ai·语言模型·自然语言处理·论文速览
赋创小助手1 天前
NVIDIA B200 GPU 技术解读:Blackwell 架构带来了哪些真实变化?
运维·服务器·人工智能·深度学习·计算机视觉·自然语言处理·架构
玄同7651 天前
LangChain 1.0 框架全面解析:从架构到实践
人工智能·深度学习·自然语言处理·中间件·架构·langchain·rag