glm-4v-9b 部署

glm-4v-9b 模型文件地址

GLM-4 仓库文件地址

官方测试 硬件配置和系统要求

官方测试硬件信息:

  • OS: Ubuntu 22.04
  • Memory: 512GB
  • Python: 3.12.3
  • CUDA Version: 12.3
  • GPU Driver: 535.104.05
  • GPU: NVIDIA A100-SXM4-80GB * 8

最低硬件要求

如果希望运行官方提供的最基础代码 (transformers 后端) 需要:

  • Python >= 3.10
  • 内存不少于 32 GB

如果希望运行官方提供的本文件夹的所有代码,还需要:

  • Linux 操作系统 (Debian 系列最佳)
  • 大于 8GB 显存的,支持 CUDA 或者 ROCM 并且支持 BF16 推理的 GPU 设备。(FP16 精度无法训练,推理有小概率出现问题)
一、Codestral-22B-v0.1环境安装

1、硬件配置

用两张4090D

2、配置环境

建议最好自己新建一个conda环境

conda create -n glm4v python=3.10 -y

conda activate glm4v

unzip GLM-4-main.zip

3、安装依赖

pip install -r requirements.txt -i https://pypi.mirrors.ustc.edu.cn/simple 

pip install gradio==3.40.0 -i https://pypi.mirrors.ustc.edu.cn/simple

/root/autodl-tmp/glm-4v-9b

基础功能调用

除非特殊说明,本文件夹所有 demo 并不支持 Function Call 和 All Tools 等进阶用法

使用 transformers 后端代码

  • 使用命令行与 GLM-4-9B 模型进行对话。

    python trans_cli_demo.py # GLM-4-9B-Chat

    python trans_cli_vision_demo.py # GLM-4V-9B

  • 使用 Gradio 网页端与 GLM-4-9B-Chat 模型进行对话。

    python trans_web_demo.py

  • 使用 Batch 推理。

    python cli_batch_request_demo.py

使用 vLLM 后端代码

  • 使用命令行与 GLM-4-9B-Chat 模型进行对话。

    python vllm_cli_demo.py

  • 自行构建服务端,并使用 OpenAI API 的请求格式与 GLM-4-9B-Chat 模型进行对话。本 demo 支持 Function Call 和 All Tools功能。

启动服务端:

python openai_api_server.py

客户端请求:

python openai_api_request.py
相关推荐
光芒再现dev40 分钟前
已解决,部署GPTSoVITS报错‘AsyncRequest‘ object has no attribute ‘_json_response_data‘
运维·python·gpt·语言模型·自然语言处理
Yawesh_best2 小时前
思源笔记轻松连接本地Ollama大语言模型,开启AI写作新体验!
笔记·语言模型·ai写作
人工智能培训咨询叶梓2 小时前
探索开放资源上指令微调语言模型的现状
人工智能·语言模型·自然语言处理·性能优化·调优·大模型微调·指令微调
zzZ_CMing2 小时前
大语言模型训练的全过程:预训练、微调、RLHF
人工智能·自然语言处理·aigc
软工菜鸡2 小时前
预训练语言模型BERT——PaddleNLP中的预训练模型
大数据·人工智能·深度学习·算法·语言模型·自然语言处理·bert
放飞自我的Coder2 小时前
【python ROUGE BLEU jiaba.cut NLP常用的指标计算】
python·自然语言处理·bleu·rouge·jieba分词
vivid_blog2 小时前
大语言模型(LLM)入门级选手初学教程 III
人工智能·语言模型·自然语言处理
使者大牙3 小时前
【大语言模型学习笔记】第一篇:LLM大规模语言模型介绍
笔记·学习·语言模型
qzhqbb3 小时前
语言模型的采样方法
人工智能·语言模型·自然语言处理
qzhqbb3 小时前
基于 Transformer 的语言模型
人工智能·语言模型·自然语言处理·transformer