glm-4v-9b 部署

glm-4v-9b 模型文件地址

GLM-4 仓库文件地址

官方测试 硬件配置和系统要求

官方测试硬件信息:

  • OS: Ubuntu 22.04
  • Memory: 512GB
  • Python: 3.12.3
  • CUDA Version: 12.3
  • GPU Driver: 535.104.05
  • GPU: NVIDIA A100-SXM4-80GB * 8

最低硬件要求

如果希望运行官方提供的最基础代码 (transformers 后端) 需要:

  • Python >= 3.10
  • 内存不少于 32 GB

如果希望运行官方提供的本文件夹的所有代码,还需要:

  • Linux 操作系统 (Debian 系列最佳)
  • 大于 8GB 显存的,支持 CUDA 或者 ROCM 并且支持 BF16 推理的 GPU 设备。(FP16 精度无法训练,推理有小概率出现问题)
一、Codestral-22B-v0.1环境安装

1、硬件配置

用两张4090D

2、配置环境

建议最好自己新建一个conda环境

conda create -n glm4v python=3.10 -y

conda activate glm4v

unzip GLM-4-main.zip

3、安装依赖

pip install -r requirements.txt -i https://pypi.mirrors.ustc.edu.cn/simple 

pip install gradio==3.40.0 -i https://pypi.mirrors.ustc.edu.cn/simple

/root/autodl-tmp/glm-4v-9b

基础功能调用

除非特殊说明,本文件夹所有 demo 并不支持 Function Call 和 All Tools 等进阶用法

使用 transformers 后端代码

  • 使用命令行与 GLM-4-9B 模型进行对话。

    python trans_cli_demo.py # GLM-4-9B-Chat

    python trans_cli_vision_demo.py # GLM-4V-9B

  • 使用 Gradio 网页端与 GLM-4-9B-Chat 模型进行对话。

    python trans_web_demo.py

  • 使用 Batch 推理。

    python cli_batch_request_demo.py

使用 vLLM 后端代码

  • 使用命令行与 GLM-4-9B-Chat 模型进行对话。

    python vllm_cli_demo.py

  • 自行构建服务端,并使用 OpenAI API 的请求格式与 GLM-4-9B-Chat 模型进行对话。本 demo 支持 Function Call 和 All Tools功能。

启动服务端:

python openai_api_server.py

客户端请求:

python openai_api_request.py
相关推荐
夏莉莉iy7 分钟前
[MDM 2024]Spatial-Temporal Large Language Model for Traffic Prediction
人工智能·笔记·深度学习·机器学习·语言模型·自然语言处理·transformer
伊一大数据&人工智能学习日志2 小时前
自然语言处理NLP 04案例——苏宁易购优质评论与差评分析
人工智能·python·机器学习·自然语言处理·数据挖掘
闻道且行之2 小时前
LLaMA-Factory|微调大语言模型初探索(4),64G显存微调13b模型
人工智能·语言模型·llama·qlora·fsdp
橙狮科技4 小时前
使用 GPTQ 进行 4 位 LLM 量化
人工智能·python·语言模型
UQI-LIUWJ4 小时前
论文略:ACloser Look into Mixture-of-Experts in Large Language Models
人工智能·语言模型·自然语言处理
Java知识技术分享5 小时前
使用LangChain构建第一个ReAct Agent
python·react.js·ai·语言模型·langchain
CS_木成河5 小时前
【深度学习】预训练和微调概述
人工智能·深度学习·语言模型·微调·预训练
新加坡内哥谈技术5 小时前
微软发布Majorana 1芯片,开启量子计算新路径
人工智能·深度学习·语言模型·自然语言处理
真智AI5 小时前
使用 DistilBERT 进行资源高效的自然语言处理
人工智能·自然语言处理
deephub19 小时前
LLM高效推理:KV缓存与分页注意力机制深度解析
人工智能·深度学习·语言模型