glm-4v-9b 部署

glm-4v-9b 模型文件地址

GLM-4 仓库文件地址

官方测试 硬件配置和系统要求

官方测试硬件信息:

  • OS: Ubuntu 22.04
  • Memory: 512GB
  • Python: 3.12.3
  • CUDA Version: 12.3
  • GPU Driver: 535.104.05
  • GPU: NVIDIA A100-SXM4-80GB * 8

最低硬件要求

如果希望运行官方提供的最基础代码 (transformers 后端) 需要:

  • Python >= 3.10
  • 内存不少于 32 GB

如果希望运行官方提供的本文件夹的所有代码,还需要:

  • Linux 操作系统 (Debian 系列最佳)
  • 大于 8GB 显存的,支持 CUDA 或者 ROCM 并且支持 BF16 推理的 GPU 设备。(FP16 精度无法训练,推理有小概率出现问题)
一、Codestral-22B-v0.1环境安装

1、硬件配置

用两张4090D

2、配置环境

建议最好自己新建一个conda环境

conda create -n glm4v python=3.10 -y

conda activate glm4v

unzip GLM-4-main.zip

3、安装依赖

pip install -r requirements.txt -i https://pypi.mirrors.ustc.edu.cn/simple 

pip install gradio==3.40.0 -i https://pypi.mirrors.ustc.edu.cn/simple

/root/autodl-tmp/glm-4v-9b

基础功能调用

除非特殊说明,本文件夹所有 demo 并不支持 Function Call 和 All Tools 等进阶用法

使用 transformers 后端代码

  • 使用命令行与 GLM-4-9B 模型进行对话。

    python trans_cli_demo.py # GLM-4-9B-Chat

    python trans_cli_vision_demo.py # GLM-4V-9B

  • 使用 Gradio 网页端与 GLM-4-9B-Chat 模型进行对话。

    python trans_web_demo.py

  • 使用 Batch 推理。

    python cli_batch_request_demo.py

使用 vLLM 后端代码

  • 使用命令行与 GLM-4-9B-Chat 模型进行对话。

    python vllm_cli_demo.py

  • 自行构建服务端,并使用 OpenAI API 的请求格式与 GLM-4-9B-Chat 模型进行对话。本 demo 支持 Function Call 和 All Tools功能。

启动服务端:

python openai_api_server.py

客户端请求:

python openai_api_request.py
相关推荐
学术头条2 小时前
清华、智谱团队:探索 RLHF 的 scaling laws
人工智能·深度学习·算法·机器学习·语言模型·计算语言学
18号房客2 小时前
一个简单的机器学习实战例程,使用Scikit-Learn库来完成一个常见的分类任务——**鸢尾花数据集(Iris Dataset)**的分类
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·sklearn
强哥之神3 小时前
Nexa AI发布OmniAudio-2.6B:一款快速的音频语言模型,专为边缘部署设计
人工智能·深度学习·机器学习·语言模型·自然语言处理·音视频·openai
18号房客3 小时前
一个简单的深度学习模型例程,使用Keras(基于TensorFlow)构建一个卷积神经网络(CNN)来分类MNIST手写数字数据集。
人工智能·深度学习·机器学习·生成对抗网络·语言模型·自然语言处理·tensorflow
日出等日落5 小时前
从零开始使用MaxKB打造本地大语言模型智能问答系统与远程交互
人工智能·语言模型·自然语言处理
cd_farsight15 小时前
nlp初学者怎么入门?需要学习哪些?
人工智能·自然语言处理
AI明说15 小时前
评估大语言模型在药物基因组学问答任务中的表现:PGxQA
人工智能·语言模型·自然语言处理·数智药师·数智药学
Focus_Liu15 小时前
NLP-UIE(Universal Information Extraction)
人工智能·自然语言处理
新加坡内哥谈技术18 小时前
苏黎世联邦理工学院与加州大学伯克利分校推出MaxInfoRL:平衡内在与外在探索的全新强化学习框架
大数据·人工智能·语言模型
洛阳泰山19 小时前
MaxKB基于大语言模型和 RAG的开源知识库问答系统的快速部署教程
人工智能·语言模型·开源·rag·maxkb