OpenCV图像裁剪:使用&运算符在OpenCV图像裁剪时进行边界检查

给定ROI的图像裁剪

假设需要按照既定的ROI对图像进行取窗裁剪,用cv::Rect给定ROI区域,裁剪可以按照如下方式:

cpp 复制代码
cv::Mat image = cv::imread("/path/to/image.jpg");
cv::Rect roi = cv::Rect(x, y, width, height);
cv::Mat crop = image(roi);

限制边界

如果roi的坐标超出了图像的合法区域,会引发运行时错误,导致程序崩溃。此时一般要提前进行边界检查和规范,比如这样:

cpp 复制代码
if(roi.x<0) roi.x=0;
if(roi.y<0) roi.y=0;
if(roi.x+roi.width >= image.cols) roi.width = image.cols-roi.x;
if(roi.y+roi.height >= image.rows) roi.heigth = image.rows-roi.y;

这样写代码,看上去不太直观,而且有些冗长,更谈不上优雅或者可读性。

或者这样:

cpp 复制代码
int w = image.cols;
int h = image.rows;

int x0 = std::max<int>(0, roi.tl().x);
int y0 = std::max<int>(0, roi.tl().y);
int x1 = std::min<int>(w, roi.br().x);
int y1 = std::min<int>(h, roi.br().y);

roi = cv::Rect(cv::Point(x0, y0), cv::Point(x1, y1));

稍微增加了些可读性,特别是如果习惯于使用stl的max/min函数进行边界检查。但是仍然冗长,不够优雅。冗长有什么坏处?一般来讲,冗长的代码不易于维护,可读性不会太强。另外以上面这段实现为例,由于反复使用同一变量,仅仅为了对其不同的成员做类似的操作,非常容易导致低级错误。

Operator & : Get Intersection of cv::Rect

这个运算符&比较直观。在C/C++语法中,&属于位运算,是按位与的功能。cv::Rect类型重载了它,可以想象它的功能就是取矩形的相交区域。所以要对图像ROI的cv::Rect进行边界限制,那么将ROI和表示图像区域的Bounding Box求相交区域即可。代码实现如下:

cpp 复制代码
cv::Rect bbox(0, 0, mat.cols, mat.rows);
cv::Rect roi = roi & bbox; // that's all

这样基本上就一句话完成了边界限制。

What's More: verify if rect is inside image

进一步说,如果要检查一个rect是否在图像区域内,不用Operator的话,一般按照以下思路实现:

cpp 复制代码
bool rectIsInside(const cv::Rect& rect, const cv::Mat& image)
{
    return (
        rect.x>=0 && 
        rect.y>=0 && 
        rect.x + rect.width < m.cols && 
        rect.x + rect.width < m.rows) ;
}

但是如果使用了&运算符,life will be much easier.

cpp 复制代码
bool rectIsInside(const cv::Rect& rect, const cv::Mat& image)
{
    cv::Rect bbox(0, 0, image.cols, image.rows);
    return (rect & bbox) == rect; // elegent and efficient
}

简洁、优雅、可读性强的实现方式。

相关推荐
全栈小514 分钟前
【2025年度创作】分享和总结如何通过AI快速开发一款MCP(模型上下文协议)服务插件,并进行本地和线上部署测试,最后上架MCP以及智能体调用MCP插件
人工智能·mcp·博客之星2025
囊中之锥.15 分钟前
《深度学习》CUDA安装配置、pytorch库、torchvision库、torchaudio库安装
人工智能·pytorch·深度学习
ttttming16 分钟前
day33 简单神经网络
人工智能·深度学习·神经网络
IT·小灰灰20 分钟前
探索即梦生图AI与AI Ping平台的创新融合:技术实践与代码实现
人工智能·python
deephub22 分钟前
CALM自编码器:用连续向量替代离散token,生成效率提升4倍
人工智能·python·大语言模型
凌峰的博客1 小时前
基于深度学习的图像安全与隐私保护研究方向调研(中)
人工智能·深度学习·安全
香蕉卜拿拿拿6 小时前
软件解耦与扩展的利器:基于C++与C#的插件式开发实践
c++
aigcapi6 小时前
RAG 系统的黑盒测试:从算法对齐视角解析 GEO 优化的技术指标体系
大数据·人工智能·算法
上进小菜猪7 小时前
基于深度学习的河道垃圾检测系统设计(YOLOv8)
人工智能
上天夭7 小时前
模型训练篇
人工智能·深度学习·机器学习