【深度学习驱动流体力学】Python流体力学Ansys Fluent

1、PyFluent:Python + Ansys Fluent 的结合

PyFluent 是一个将 Python 编程语言与 Ansys Fluent 流体动力学 (CFD) 仿真软件集成的工具。它允许用户通过 Python 脚本来控制和自动化 Fluent 中的仿真任务,实现从预处理、求解到后处理的全流程控制。PyFluent 结合了 Python 的灵活性和 Fluent 的强大功能,提供了一种高效且灵活的 CFD 仿真方法。

https://github.com/ansys/pyfluent

PyFluent 是一个强大而灵活的工具,使用户能够通过 Python 脚本全面利用 Ansys Fluent 的功能。无论是开发新产品的开发人员,还是希望优化和自动化仿真工作流程的企业,PyFluent 都是一个理想的选择。通过结合 Python 的灵活性和 Fluent 的高精度,PyFluent 为流体动力学仿真开辟了新的可能性。

2、PyFluent 的特点和优势

强大的灵活性:

利用 Python 的几乎无限可能性和灵活性,用户可以创建高度定制化的仿真工作流程。

支持复杂的自动化任务,从而减少手动操作,提高工作效率。

市场领先的准确性:

Ansys Fluent 是市场上最先进的 CFD 仿真工具之一,以其高准确性和可靠性著称。

结合 Fluent 的强大功能,用户可以进行详细而准确的流体动力学模拟。

全面的仿真控制:

通过 PyFluent,用户可以使用 Python 脚本深入访问 Fluent 的功能,包括网格划分、求解器设置、仿真运行和结果后处理。

提供了一种新的仿真方法,使开发人员能够更高效地执行 CFD 仿真。

强大的社区和资源:

PyFluent 结合了强大的同行社区,用户可以通过社区资源共享和获取帮助。

利用 Python 丰富的库生态系统,如 NumPy、TensorFlow、Pandas 等,可以实现更高级的数据处理和分析。

PyFluent 的包和安装

PyFluent API 被分为三个独立的包,以最大限度地提高可移植性和减少依赖性:

ansys-fluent-core:

提供对 Fluent 的网格划分、求解器和后处理功能的访问。

ansys-fluent-parametric:

提供对 Fluent 参数化工作流程功能的访问,支持参数化仿真和优化。

ansys-fluent-visualization:

提供与 PyVista 和 Matplotlib 配合使用的后处理功能,支持高级数据可视化。

如何获取 PyFluent

PyFluent 不与 Fluent 安装捆绑在一起,但如果您对 Python 足够熟悉,则可以像访问所有其他 Python 库一样访问 PyFluent:在GitHub上。

3、安装 PyFluent

要使用 PyFluent,首先需要安装一个受支持的 Python 发行版。以下是安装步骤:

设置 Python:

创建并激活本地虚拟环境:

python 复制代码
python -m venv myenv
source myenv/bin/activate  # 对于 Windows 系统,使用 myenv\Scripts\activate

Pip 安装:

使用 pip 安装 PyFluent 的包:

python 复制代码
pip install ansys-fluent-core
pip install ansys-fluent-parametric
pip install ansys-fluent-visualization

4、重要链接

PyAnsys 文档:https://docs.pyansys.com/

下载 Ansys Python 管理器:https://github.com/pyansys/python-installer-qt-gui/releases/

下载 Python:https://www.python.org/downloads/

如果您有其他问题或疑虑,请在 GitHub 上的 PyFluent 存储库中记录问题或发起讨论:

PyFluent-Core:https://github.com/ansys/pyfluent

PyFluent-Parametric:https://github.com/ansys/pyfluent-parametric

PyFluent-可视化:https://github.com/ansys/pyfluent-visualization

相关推荐
池央21 分钟前
AI性能极致体验:通过阿里云平台高效调用满血版DeepSeek-R1模型
人工智能·阿里云·云计算
我们的五年22 分钟前
DeepSeek 和 ChatGPT 在特定任务中的表现:逻辑推理与创意生成
人工智能·chatgpt·ai作画·deepseek
Yan-英杰23 分钟前
百度搜索和文心智能体接入DeepSeek满血版——AI搜索的新纪元
图像处理·人工智能·python·深度学习·deepseek
Fuweizn25 分钟前
富唯智能可重构柔性装配产线:以智能协同赋能制造业升级
人工智能·智能机器人·复合机器人
weixin_307779131 小时前
Azure上基于OpenAI GPT-4模型验证行政区域数据的设计方案
数据仓库·python·云计算·aws
玩电脑的辣条哥2 小时前
Python如何播放本地音乐并在web页面播放
开发语言·前端·python
taoqick2 小时前
对PosWiseFFN的改进: MoE、PKM、UltraMem
人工智能·pytorch·深度学习
suibian52352 小时前
AI时代:前端开发的职业发展路径拓宽
前端·人工智能
预测模型的开发与应用研究3 小时前
数据分析的AI+流程(个人经验)
人工智能·数据挖掘·数据分析
源大模型3 小时前
OS-Genesis:基于逆向任务合成的 GUI 代理轨迹自动化生成
人工智能·gpt·智能体