基于机器学习和奇异值分解SVD的电池剩余使用寿命预测(Python)

采用k-最近邻KNN和随机森林算法建立预测模型。

复制代码
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC  # Support Vector Classifier
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score, classification_report
from sklearn.decomposition import TruncatedSVD
from ydata_profiling import ProfileReport
from sklearn.metrics import mean_squared_error
import time


import seaborn as sns
from importlib import reload
import matplotlib.pyplot as plt
import matplotlib
import warnings




from IPython.display import display, HTML
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import plotly.io as pio


# Configure Jupyter Notebook
pd.set_option('display.max_columns', None) 
pd.set_option('display.max_rows', 500) 
pd.set_option('display.expand_frame_repr', False)
display(HTML("<style>div.output_scroll { height: 35em; }</style>"))

dataset = pd.read_csv('Battery_RUL.csv')

profile = ProfileReport(dataset)
profile

Summarize dataset:   0%|          | 0/5 [00:00<?, ?it/s]

Generate report structure:   0%|          | 0/1 [00:00<?, ?it/s]

Render HTML:   0%|          | 0/1 [00:00<?, ?it/s]

y = dataset['RUL']

x = dataset.drop(columns=['RUL'])

X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)

Singular Value Decomposition

复制代码
# Step 5: Initialize and fit TruncatedSVD to your training data
n_components = 6  # Adjust the number of components based on your desired dimensionality
svd = TruncatedSVD(n_components=n_components, random_state=42)
X_train_svd = svd.fit_transform(X_train)




# Step 6: Transform the test data using the fitted SVD
X_test_svd = svd.transform(X_test)

K-Nearest-Neighbors

复制代码
from sklearn.neighbors import KNeighborsRegressor
start = time.time()
model = KNeighborsRegressor(n_neighbors=3).fit(X_train_svd,y_train)
end_train = time.time()
y_predictions = model.predict(X_test_svd) # These are the predictions from the test data.
end_predict = time.time()






kNN = [model.score(X_test_svd,y_test), 
       mean_squared_error(y_test,y_predictions,squared=False),
       end_train-start,
       end_predict-end_train,
       end_predict-start]


print('R-squared error: '+ "{:.2%}".format(model.score(X_test_svd,y_test)))
print('Root Mean Squared Error: '+ "{:.2f}".format(mean_squared_error(y_test,y_predictions,squared=False)))

R-squared error: 98.93%
Root Mean Squared Error: 33.30

plt.style.use('seaborn-white')
plt.rcParams['figure.figsize']=5,5 


fig,ax = plt.subplots()
plt.title('Actual vs Predicted')
plt.xlabel('Actual')
plt.ylabel('Predicted')
g = sns.scatterplot(x=y_test,
                y=y_predictions,
                s=20,
                alpha=0.6,
                linewidth=1,
                edgecolor='black',
                ax=ax)
f = sns.lineplot(x=[min(y_test),max(y_test)],
             y=[min(y_test),max(y_test)],
             linewidth=4,
             color='gray',
             ax=ax)


plt.annotate(text=('R-squared error: '+ "{:.2%}".format(model.score(X_test_svd,y_test)) +'\n' +
                  'Root Mean Squared Error: '+ "{:.2f}".format(mean_squared_error(y_test,y_predictions,squared=False))),
             xy=(0,800),
             size='medium')


xlabels = ['{:,.0f}'.format(x) for x in g.get_xticks()]
g.set_xticklabels(xlabels)
ylabels = ['{:,.0f}'.format(x) for x in g.get_yticks()]
g.set_yticklabels(ylabels)
sns.despine()

Random Forest

复制代码
%%time
from sklearn.ensemble import RandomForestRegressor
start = time.time()
model = RandomForestRegressor(n_jobs=-1,
                              n_estimators=100,
                              min_samples_leaf=1,
                              max_features='sqrt',
                              # min_samples_split=2,
                              bootstrap = True,
                              criterion='mse',
                             ).fit(X_train_svd,y_train)
end_train = time.time()
y_predictions = model.predict(X_test_svd) # These are the predictions from the test data.
end_predict = time.time()


Random_Forest = [model.score(X_test_svd,y_test), 
                                   mean_squared_error(y_test,y_predictions,squared=False),
                                   end_train-start,
                                   end_predict-end_train,
                                   end_predict-start]


print('R-squared error: '+ "{:.2%}".format(model.score(X_test_svd,y_test)))
print('Root Mean Squared Error: '+ "{:.2f}".format(mean_squared_error(y_test,y_predictions,squared=False)))

R-squared error: 99.75%
Root Mean Squared Error: 15.97
CPU times: total: 3.34 s
Wall time: 389 ms

plt.style.use('seaborn-white')
plt.rcParams['figure.figsize']=5,5 


fig,ax = plt.subplots()
plt.title('Actual vs Predicted')
plt.xlabel('Actual')
plt.ylabel('Predicted')
g = sns.scatterplot(x=y_test,
                y=y_predictions,
                s=20,
                alpha=0.6,
                linewidth=1,
                edgecolor='black',
                ax=ax)
f = sns.lineplot(x=[min(y_test),max(y_test)],
             y=[min(y_test),max(y_test)],
             linewidth=4,
             color='gray',
             ax=ax)


plt.annotate(text=('R-squared error: '+ "{:.2%}".format(model.score(X_test_svd,y_test)) +'\n' +
                  'Root Mean Squared Error: '+ "{:.2f}".format(mean_squared_error(y_test,y_predictions,squared=False))),
             xy=(0,800),
             size='medium')


xlabels = ['{:,.0f}'.format(x) for x in g.get_xticks()]
g.set_xticklabels(xlabels)
ylabels = ['{:,.0f}'.format(x) for x in g.get_yticks()]
g.set_yticklabels(ylabels)
sns.despine()

工学博士,担任《Mechanical System and Signal Processing》《中国电机工程学报》《控制与决策》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

相关推荐
OLOLOadsd123几秒前
YOLO11改进_C3k2-ODConv优化_车轮缺陷检测与分类系统_裂纹划痕识别_原创
人工智能·分类·数据挖掘
kk哥8899几秒前
C++新手入门
开发语言·c++
OLOLOadsd1231 分钟前
基于YOLO13-C3k2-RFCBAMConv的注射器和药瓶计数检测系统_1
人工智能·计算机视觉·目标跟踪
Hello eveybody2 分钟前
Java发明者介绍
java·开发语言
Coding茶水间2 分钟前
基于深度学习的红外镜头下的行人识别系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
开发语言·人工智能·深度学习·yolo·目标检测·机器学习
老鼠只爱大米2 分钟前
LeetCode经典算法面试题 #19:删除链表的倒数第N个结点(双指针、栈辅助法等多种实现方案详细解析)
算法·leetcode·链表·双指针·删除链表节点·一趟扫描
CoderJia程序员甲2 分钟前
GitHub 热榜项目 - 日榜(2026-01-23)
人工智能·ai·大模型·github·ai教程
DS随心转小程序3 分钟前
ChatGPT和Gemini转pdf
人工智能·ai·chatgpt·pdf·豆包·deepseek·ds随心转
棒棒的皮皮3 分钟前
【深度学习】YOLO 目标检测论文 7 天阅读计划(入门→进阶→前沿)
深度学习·yolo·目标检测·计算机视觉·目标跟踪
DS随心转APP3 分钟前
deepseek输出word指令
人工智能·ai·chatgpt·deepseek·ds随心转