车牌号识别(低级版)

python 复制代码
import cv2
from matplotlib import pyplot as plt
import os
import numpy as np
from paddleocr import PaddleOCR, draw_ocr
from PIL import Image, ImageDraw, ImageFont


# 利用paddelOCR进行文字扫描,并输出结果
def text_scan(img_path):
    ocr = PaddleOCR(use_angle_cls=True, use_gpu=False)
    # img_path = r'test image/license_plate1.jpg'
    result = ocr.ocr(img_path, cls=True)
    for line in result:
        # print(line)
        return result


# 在图片中写入将车牌信息
def infor_write(img, rect, result):
    text = result[0][0][1][0]
    cv2img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  # cv2和PIL中颜色的hex码的储存顺序不同
    pilimg = Image.fromarray(cv2img)
    # PIL图片上打印汉字
    draw = ImageDraw.Draw(pilimg)  # 图片上打印
    font = ImageFont.truetype("simhei.ttf", 20, encoding="utf-8")  # 参数1:字体文件路径,参数2:字体大小
    draw.text((rect[2], rect[1]), str(text), (0, 255, 0), font=font)  # 参数1:打印坐标,参数2:文本,参数3:字体颜色,参数4:字体
    # PIL图片转cv2 图片
    cv2charimg = cv2.cvtColor(np.array(pilimg), cv2.COLOR_RGB2BGR)
    return cv2charimg

def plt_show0(img):
    #cv2与plt的图像通道不同:cv2为[b,g,r];plt为[r,g,b]
    b,g,r=cv2.split(img)
    img=cv2.merge([r,g,b])
    plt.imshow(img)
    plt.show()
#plt显示灰度图片
def plt_show(img):
    plt.imshow(img,camp='gray')
    plt.show()

# 图像去噪灰度处理
def gray_guss(img):
    img = cv2.GaussianBlur(img, (1, 1), 0)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    return gray


# 图像尺寸变换
def img_resize(img):
    a = 400 * img.shape[0] / img.shape[1]
    a = int(a)
    img = cv2.resize(img, (400, a))
    return img


# Sobel检测,x方向上的边缘检测(增强边缘信息)
def Sobel_detec(img):
    Sobel_x = cv2.Sobel(img, cv2.CV_16S, 1, 0)
    absX = cv2.convertScaleAbs(Sobel_x)
    return absX


# 寻找某区域最大外接矩形框4点坐标
def find_retangle(contour):
    y, x = [], []
    for p in contour:
        y.append(p[0][0])
        x.append(p[0][1])
    return [min(y), min(x), max(y), max(x)]


# 寻找并定位车牌轮廓位置
def locate_license(img):
    blocks = []
    contours, hierarchy = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    for c in contours:
        x, y, w, h = cv2.boundingRect(c)
        r = find_retangle(c)
        a = (r[2] - r[0]) * (r[3] - r[1])
        s = (r[2] - r[0]) / (r[3] - r[1])
        print(w)
        if (w > (h * 3)) and (w < (h * 5)):
            blocks.append([r, a, s])
        # blocks.append([r, a, s])
    blocks = sorted(blocks, key=lambda b: b[1])[-3:]
    maxweight, maxindex = 0, -1
    for i in range(len(blocks)):
        b = oriimg[blocks[i][0][1]:blocks[i][0][3], blocks[i][0][0]:blocks[i][0][2]]
        hsv = cv2.cvtColor(b, cv2.COLOR_BGR2HSV)
        lower = np.array([70, 150, 50])
        upper = np.array([120, 255, 255])
        mask = cv2.inRange(hsv, lower, upper)
        w1 = 0
        for m in mask:
            w1 += m / 255
        w2 = 0
        for w in w1:
            w2 += w
        if w2 > maxweight:
            maxindex = i
            maxweight = w2
        print('blocks是', blocks[maxindex])
        print('blocks0是',blocks[maxindex][0])
    return blocks[maxindex][0]


# 图像预处理+车牌轮廓位置检测
def fine_lisecenpts(img):
    # 图像去噪灰度处理
    guss = gray_guss(img)

    # Sobel检测,增强边缘信息
    sobel = Sobel_detec(guss)

    # 图像阈值化操作------获得二值化图
    ret, threshold = cv2.threshold(sobel, 0, 255, cv2.THRESH_OTSU)

    # # 对二值化图像进行边缘检测(可选,通过边缘检测后,最终进行形态学运算得到的轮廓面积更大)
    # threshold=cv2.Canny(threshold,threshold.shape[0],threshold.shape[1])

    # 形态学运算(从图像中提取对表达和描绘区域形状有意义的图像分量)------闭操作
    kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (30, 10))
    closing = cv2.morphologyEx(threshold, cv2.MORPH_CLOSE, kernelX, iterations=1)

    # 腐蚀(erode)和膨胀(dilate)
    kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (50, 1))
    kernelY = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 20))

    # x方向上进行闭操作(抑制暗细节)
    img = cv2.dilate(closing, kernelX)
    img = cv2.erode(img, kernelX)

    # y方向上进行开操作
    img = cv2.erode(img, kernelY)
    img = cv2.dilate(img, kernelY)

    # 进行中值滤波去噪
    Blur = cv2.medianBlur(img, 15)

    # 寻找轮廓
    rect = locate_license(Blur)
    print('rect是',rect)
    return rect, Blur


# 车牌字符识别
def seg_char(rect_list, img):
    img = oriimg[rect_list[1]:rect_list[3], rect_list[0]:rect_list[2]]

    # 图像去噪灰度处理
    gray = gray_guss(img)

    # 图像阈值化操作-获得二值化图(可选)
    # ret,charimage=cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)

    # 图像进行闭运算
    k1 = np.ones((1, 1), np.uint8)
    close = cv2.morphologyEx(gray, cv2.MORPH_CLOSE, k1)
    cv2.imshow('close', close)
    cv2.imwrite(r"E:\ultralytics-20240216\21\img2\6.jpg", close)
    cv2.waitKey()

    res = text_scan(r"E:\ultralytics-20240216\21\img2\6.jpg")

    return res
def put_chinese_text(img, text, left_top):
    # 转换 cv2 img 为 PIL Image
    img_PIL = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))

    draw = ImageDraw.Draw(img_PIL)
    font = ImageFont.truetype('simhei.ttf', 30, encoding="utf-8")

    # 黄色文字
    fillColor = (255,255,0)

    position = left_top
    draw.text(position, text, font=font, fill=fillColor)

    # 转换回 OpenCV 格式
    img_out = cv2.cvtColor(np.asarray(img_PIL),cv2.COLOR_RGB2BGR)

    return img_out

# 主函数区
if __name__ == '__main__':
    img = cv2.imread(r"E:\ultralytics-20240216\21\img2\5.jpg")
    # 改变图像尺寸
    img = img_resize(img)
    oriimg = img.copy()
    # 寻找到车牌外轮廓矩形坐标
    print(1)
    rect, img = fine_lisecenpts(img)
    # 利用车牌轮廓坐标划分ROI区域用于字符识别,利用OCR识别车牌字符并返回字符串内容
    result = seg_char(rect, oriimg)
    print(result)
    print(rect)

# 循环读取车牌字符串并写入到图片中
    text = result[0][0][1][0]

    # 获取文本所在的矩形位置
    left_top = tuple(rect[0:2])
    right_bottom = tuple(rect[2:4])

    # 在原始图像上绘制矩形(黄色框)
    cv2.rectangle(oriimg, left_top, right_bottom, (0, 255, 255), 2)

    # 在矩形旁边写入文本
    # 注意你可能需要根据实际情况调整文本的位置
    text_position = (right_bottom[0] + 1, right_bottom[1])
    oriimg = put_chinese_text(oriimg, text, text_position)
    # cv2.putText(oriimg, text, text_position, cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)

    cv2.imshow("Image with text", oriimg)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
相关推荐
有Li1 小时前
跨视角差异-依赖网络用于体积医学图像分割|文献速递-生成式模型与transformer在医学影像中的应用
人工智能·计算机视觉
傻啦嘿哟1 小时前
如何使用 Python 开发一个简单的文本数据转换为 Excel 工具
开发语言·python·excel
B站计算机毕业设计超人1 小时前
计算机毕业设计SparkStreaming+Kafka旅游推荐系统 旅游景点客流量预测 旅游可视化 旅游大数据 Hive数据仓库 机器学习 深度学习
大数据·数据仓库·hadoop·python·kafka·课程设计·数据可视化
GOTXX1 小时前
基于Opencv的图像处理软件
图像处理·人工智能·深度学习·opencv·卷积神经网络
IT古董1 小时前
【人工智能】Python在机器学习与人工智能中的应用
开发语言·人工智能·python·机器学习
嵌入式大圣2 小时前
单片机结合OpenCV
单片机·嵌入式硬件·opencv
湫ccc2 小时前
《Python基础》之pip换国内镜像源
开发语言·python·pip
hakesashou2 小时前
Python中常用的函数介绍
java·网络·python
xrgs_shz2 小时前
MATLAB读入不同类型图像并显示图像和相关信息
图像处理·计算机视觉·matlab
菜鸟的人工智能之路2 小时前
极坐标气泡图:医学数据分析的可视化新视角
python·数据分析·健康医疗