pytorch 源代码目录作用归纳备忘

PyTorch 是一个开源的机器学习库,广泛用于应用程序如计算机视觉和自然语言处理。它是由 Facebook 的 AI 研究团队开发的,并且是基于 Torch 库。PyTorch 的设计非常模块化,主要可以分为几个核心部分:

1. torch

这是 PyTorch 的核心库,包含了多维张量的定义及其操作。此外,它还包括了自动微分系统(Autograd)来支持模型的训练。

  • torch/autograd:负责自动微分的管理和实现。它使得用户可以自动计算梯度。
  • torch/nn:神经网络库。这个模块提供了构建深度学习模型所需的所有构建块(如层、激活函数等)。
  • torch/optim:优化器模块,包含了如 SGD、Adam 等优化算法,用于模型训练。
  • torch/utils:包含了数据加载和其他实用功能的辅助工具。
  • torch/multiprocessing:是 Python multiprocessing 的替代品,专门为在多个进程中处理张量和进行深度学习而设计。

2. torchvision

这是用于处理图像的库,提供了加载常见数据集的数据加载器、图像转换操作、预训练好的模型等。

  • torchvision/datasets:包含常用视觉数据集的加载器。
  • torchvision/models:提供预训练的模型,如 ResNet、VGG 等。
  • torchvision/transforms:图像预处理的方法,如裁剪、旋转等。

3. torchaudio

提供音频处理的工具和数据集。

4. torchtext

用于自然语言处理的库,提供文本处理工具和数据集。

5. C++ API

PyTorch 还提供了 C++ 接口,允许使用 C++ 来实现和训练神经网络模型。

6. 分布式训练

  • torch.distributed:支持多机多卡的分布式训练。

代码结构示例

PyTorch 的代码库核心结构大致如下(简化版本):

html 复制代码
pytorch/
│
├── torch/             - 核心库
│   ├── __init__.py
│   ├── nn/            - 神经网络模块
│   ├── optim/         - 优化器模块
│   ├── utils/         - 实用工具模块
│   └── autograd/      - 自动微分系统
│
├── torchvision/       - 视觉库
│   ├── datasets/
│   ├── models/
│   └── transforms/
│
├── torchaudio/        - 音频库
│
└── torchtext/         - 文本处理库
相关推荐
小鸡吃米…30 分钟前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫1 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)1 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan1 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维1 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS1 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd2 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
njsgcs2 小时前
ue python二次开发启动教程+ 导入fbx到指定文件夹
开发语言·python·unreal engine·ue
io_T_T2 小时前
迭代器 iteration、iter 与 多线程 concurrent 交叉实践(详细)
python
水如烟2 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能