gcn+tcn+transformer入侵检测

gcn

gcn_out = self.gcn(A_hat, D_hat, X) 的公式实际上是图卷积网络(GCN)层的核心操作。具体来说,这一步的计算基于图卷积的基本公式:

H ( l + 1 ) = σ ( D ^ − 1 / 2 A ^ D ^ − 1 / 2 H ( l ) W ( l ) ) H^{(l+1)} = \sigma\left( \hat{D}^{-1/2} \hat{A} \hat{D}^{-1/2} H^{(l)} W^{(l)} \right) H(l+1)=σ(D^−1/2A^D^−1/2H(l)W(l))

在这个公式中:

  • H ( l ) H^{(l)} H(l) 是第 l l l 层的节点特征矩阵, H ( 0 ) = X H^{(0)} = X H(0)=X 即输入的节点特征矩阵。
  • A ^ \hat{A} A^ 是加入自环后的图的邻接矩阵。
  • D ^ \hat{D} D^ 是 A ^ \hat{A} A^ 的度矩阵。
  • W ( l ) W^{(l)} W(l) 是第 l l l 层的权重矩阵。
  • σ \sigma σ 是激活函数(例如ReLU)。

GCN的公式推导

我们可以具体推导出计算步骤:

  1. 邻接矩阵和度矩阵 :假设图的邻接矩阵为 A A A,我们首先加入自环得到 A ^ = A + I \hat{A} = A + I A^=A+I,其中 I I I 是单位矩阵。然后计算 A ^ \hat{A} A^ 的度矩阵 D ^ \hat{D} D^,其对角线元素为 D ^ i i = ∑ j A ^ i j \hat{D}{ii} = \sum_j \hat{A}{ij} D^ii=∑jA^ij。

  2. 归一化的邻接矩阵 :接下来计算 D ^ − 1 / 2 A ^ D ^ − 1 / 2 \hat{D}^{-1/2} \hat{A} \hat{D}^{-1/2} D^−1/2A^D^−1/2,用于对邻接矩阵进行归一化,使得卷积操作不会改变特征的尺度。

  3. 图卷积操作 :最后,将归一化后的邻接矩阵与输入特征矩阵相乘,再与权重矩阵 W W W 相乘,并通过激活函数 σ \sigma σ 得到输出特征矩阵 H ( l + 1 ) H^{(l+1)} H(l+1)。

tcn

在Temporal Convolutional Network(TCN)中,关键操作包括卷积操作、激活函数、丢弃和跳跃连接。以下是TCN中TemporalBlock的推理公式:

  1. 卷积操作:使用扩展卷积对输入进行时间卷积。

y ( 1 ) = ReLU ( Dropout ( Chomp ( Conv1d ( x , W 1 ) ) ) ) y^{(1)} = \text{ReLU}(\text{Dropout}(\text{Chomp}(\text{Conv1d}(x, W_1)))) y(1)=ReLU(Dropout(Chomp(Conv1d(x,W1))))

  1. 第二次卷积操作:再次使用扩展卷积,并应用相同的操作。

y ( 2 ) = ReLU ( Dropout ( Chomp ( Conv1d ( y ( 1 ) , W 2 ) ) ) ) y^{(2)} = \text{ReLU}(\text{Dropout}(\text{Chomp}(\text{Conv1d}(y^{(1)}, W_2)))) y(2)=ReLU(Dropout(Chomp(Conv1d(y(1),W2))))

  1. 跳跃连接 :如果输入和输出的维度不同,则使用 1 × 1 1 \times 1 1×1 卷积对输入进行下采样。

res = { x , if n inputs = n outputs Conv1d ( x , W downsample ) , otherwise \text{res} = \begin{cases} x, & \text{if } n_{\text{inputs}} = n_{\text{outputs}} \\ \text{Conv1d}(x, W_{\text{downsample}}), & \text{otherwise} \end{cases} res={x,Conv1d(x,Wdownsample),if ninputs=noutputsotherwise

  1. 输出计算:将卷积操作后的输出与跳跃连接的结果相加,并通过ReLU激活函数。

output = ReLU ( y ( 2 ) + res ) \text{output} = \text{ReLU}(y^{(2)} + \text{res}) output=ReLU(y(2)+res)

总结起来,TemporalBlock的推理公式如下:

output = ReLU ( Conv1d ( ReLU ( Dropout ( Chomp ( Conv1d ( x , W 1 ) ) ) ) , W 2 ) + res ) \text{output} = \text{ReLU}(\text{Conv1d}(\text{ReLU}(\text{Dropout}(\text{Chomp}(\text{Conv1d}(x, W_1)))), W_2) + \text{res}) output=ReLU(Conv1d(ReLU(Dropout(Chomp(Conv1d(x,W1)))),W2)+res)

其中:

  • Conv1d ( x , W ) \text{Conv1d}(x, W) Conv1d(x,W) 表示对输入 x x x 进行卷积操作,卷积核权重为 W W W。
  • Chomp \text{Chomp} Chomp 用于去除卷积后多余的填充部分。
  • Dropout \text{Dropout} Dropout 是丢弃层,用于防止过拟合。
  • ReLU \text{ReLU} ReLU 是激活函数。
  • res \text{res} res 是跳跃连接的结果。

transformer

在TransformerBlock中,关键操作包括多头自注意力机制、前馈神经网络层、层归一化和跳跃连接。以下是TransformerBlock的推理公式:

  1. 多头自注意力机制

Attention ( Q , K , V ) = softmax ( Q K T d k ) V \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right) V Attention(Q,K,V)=softmax(dk QKT)V

其中, Q = K = V = x Q = K = V = x Q=K=V=x, d k d_k dk 是键的维度。多头自注意力输出为:

attn_output = MultiHeadAttention ( x , x , x ) \text{attn\_output} = \text{MultiHeadAttention}(x, x, x) attn_output=MultiHeadAttention(x,x,x)

  1. 第一跳跃连接和层归一化

x 1 = LayerNorm ( x + Dropout ( attn_output ) ) x_1 = \text{LayerNorm}(x + \text{Dropout}(\text{attn\_output})) x1=LayerNorm(x+Dropout(attn_output))

  1. 前馈神经网络层

ff_output = Linear 2 ( Dropout ( ReLU ( Linear 1 ( x 1 ) ) ) ) \text{ff\_output} = \text{Linear}_2(\text{Dropout}(\text{ReLU}(\text{Linear}_1(x_1)))) ff_output=Linear2(Dropout(ReLU(Linear1(x1))))

  1. 第二跳跃连接和层归一化

output = LayerNorm ( x 1 + Dropout ( ff_output ) ) \text{output} = \text{LayerNorm}(x_1 + \text{Dropout}(\text{ff\_output})) output=LayerNorm(x1+Dropout(ff_output))

总结起来,TransformerBlock的推理公式如下:

  1. 多头自注意力机制

attn_output = MultiHeadAttention ( x , x , x ) \text{attn\_output} = \text{MultiHeadAttention}(x, x, x) attn_output=MultiHeadAttention(x,x,x)

  1. 第一跳跃连接和层归一化

x 1 = LayerNorm ( x + Dropout ( attn_output ) ) x_1 = \text{LayerNorm}(x + \text{Dropout}(\text{attn\_output})) x1=LayerNorm(x+Dropout(attn_output))

  1. 前馈神经网络层

ff_output = Linear 2 ( Dropout ( ReLU ( Linear 1 ( x 1 ) ) ) ) \text{ff\_output} = \text{Linear}_2(\text{Dropout}(\text{ReLU}(\text{Linear}_1(x_1)))) ff_output=Linear2(Dropout(ReLU(Linear1(x1))))

  1. 第二跳跃连接和层归一化

output = LayerNorm ( x 1 + Dropout ( ff_output ) ) \text{output} = \text{LayerNorm}(x_1 + \text{Dropout}(\text{ff\_output})) output=LayerNorm(x1+Dropout(ff_output))

相关推荐
东临碣石825 分钟前
【重磅AI论文】DeepSeek-R1:通过强化学习激励大语言模型(LLMs)的推理能力
人工智能·深度学习·语言模型
点云SLAM1 小时前
CVPR 2024 人脸方向总汇(人脸识别、头像重建、人脸合成和3D头像等)
深度学习·计算机视觉·人脸识别·3d人脸·头像重建
涛涛讲AI1 小时前
扣子平台音频功能:让声音也能“智能”起来
人工智能·音视频·工作流·智能体·ai智能体·ai应用
霍格沃兹测试开发学社测试人社区1 小时前
人工智能在音频、视觉、多模态领域的应用
软件测试·人工智能·测试开发·自动化·音视频
herosunly2 小时前
2024:人工智能大模型的璀璨年代
人工智能·大模型·年度总结·博客之星
PaLu-LI2 小时前
ORB-SLAM2源码学习:Initializer.cc(13): Initializer::ReconstructF用F矩阵恢复R,t及三维点
c++·人工智能·学习·线性代数·ubuntu·计算机视觉·矩阵
呆呆珝2 小时前
RKNN_C++版本-YOLOV5
c++·人工智能·嵌入式硬件·yolo
笔触狂放2 小时前
第一章 语音识别概述
人工智能·python·机器学习·语音识别
ZzYH222 小时前
文献阅读 250125-Accurate predictions on small data with a tabular foundation model
人工智能·笔记·深度学习·机器学习
格林威2 小时前
BroadCom-RDMA博通网卡如何进行驱动安装和设置使得对应网口具有RDMA功能以适配RDMA相机
人工智能·数码相机·opencv·计算机视觉·c#