如何保证数据库和缓存的一致性

背景:为了提高查询效率,一般会用redis作为缓存。客户端查询数据时,如果能直接命中缓存,就不用再去查数据库,从而减轻数据库的压力,而且redis是基于内存的数据库,读取速度比数据库要快很多。

更新数据库,更新缓存

由于引入了缓存,那么在数据更新时,不仅要更新数据库,而且要更新缓存,这两个更新操作存在前后的问题

  • 先更新数据库,再更新缓存;
  • 先更新缓存,再更新数据库;

先更新数据库,再更新缓存

会存在并发问题。

举个例子,比如「请求 A 」和「请求 B 」两个请求,同时更新「同一条」数据,则可能出现这样的顺序:

请求A先将数据库更新为1,然后因为网络原因,缓存更新延迟了,在这之间请求B将数据库更新为2,并且把缓存更新为2了,之后缓存更新为1才更新成功,那么此时数据库中数据是2,缓存中数据为1,出现了数据不一致现象。

先更新缓存,再更新数据库

那换成「先更新缓存,再更新数据库」这个方案,还会有问题吗?

依然还是存在并发的问题。

假设「请求 A 」和「请求 B 」两个请求,同时更新「同一条」数据,则可能出现这样的顺序:

A 请求先将缓存的数据更新为 1,然后在更新数据库前,B 请求来了, 将缓存的数据更新为 2,紧接着把数据库更新为 2,然后 A 请求将数据库的数据更新为 1。

此时,数据库中的数据是 1,而缓存中的数据却是 2,出现了缓存和数据库中的数据不一致的现象

所以,无论是「先更新数据库,再更新缓存」,还是「先更新缓存,再更新数据库」,这两个方案都存在并发问题,当两个请求并发更新同一条数据的时候,可能会出现缓存和数据库中的数据不一致的现象

更新数据库,删除缓存

在更新数据时,不更新缓存,而是删除缓存中的数据。然后,到读取数据时,发现缓存中没了数据之后,再从数据库中读取数据,更新到缓存中。 这个策略叫 Cache Aside 策略,中文是叫旁路缓存策略。

该策略又可以细分为「读策略」和「写策略」。

写策略的步骤:

  • 更新数据库中的数据;
  • 删除缓存中的数据。

读策略的步骤:

  • 如果读取的数据命中了缓存,则直接返回数据;
  • 如果读取的数据没有命中缓存,则从数据库中读取数据,然后将数据写入到缓存,并且返回给用户。

先删除缓存,再更新数据库

假设某个用户的年龄是 20,请求 A 要更新用户年龄为 21,所以它会删除缓存中的内容。这时,另一个请求 B 要读取这个用户的年龄,它查询缓存发现未命中后,会从数据库中读取到年龄为 20,并且写入到缓存中,然后请求 A 继续更改数据库,将用户的年龄更新为 21。

最终,该用户年龄在缓存中是 20(旧值),在数据库中是 21(新值),缓存和数据库的数据不一致。

可以看到,先删除缓存,再更新数据库,在「读 + 写」并发的时候,还是会出现缓存和数据库的数据不一致的问题

延迟双删

针对这个问题,可以使用延迟双删

延迟双删实现的伪代码如下:

复制代码
#删除缓存
redis.delKey(X)
#更新数据库
db.update(X)
#睡眠
Thread.sleep(N)
#再删除缓存
redis.delKey(X)

加了个睡眠时间,主要是为了确保请求 A 在睡眠的时候,请求 B 能够在这这一段时间完成「从数据库读取数据,再把缺失的缓存写入缓存」的操作,然后请求 A 睡眠完,再删除缓存。

所以,请求 A 的睡眠时间就需要大于请求 B 「从数据库读取数据 + 写入缓存」的时间。

先更新数据库,再删除缓存

假如某个用户数据在缓存中不存在,请求 A 读取数据时从数据库中查询到年龄为 20,在未写入缓存中时另一个请求 B 更新数据。它更新数据库中的年龄为 21,并且清空缓存。这时请求 A 把从数据库中读到的年龄为 20 的数据写入到缓存中。

最终,该用户年龄在缓存中是 20(旧值),在数据库中是 21(新值),缓存和数据库数据不一致。

从上面的理论上分析,先更新数据库,再删除缓存也是会出现数据不一致性的问题,但是在实际中,这个问题出现的概率并不高

因为缓存的写入通常要远远快于数据库的写入,所以在实际中很难出现请求 B 已经更新了数据库并且删除了缓存,请求 A 才更新完缓存的情况。

而一旦请求 A 早于请求 B 删除缓存之前更新了缓存,那么接下来的请求就会因为缓存不命中而从数据库中重新读取数据,所以不会出现这种不一致的情况。

所以,「先更新数据库 + 再删除缓存」的方案,是可以保证数据一致性的

为了确保万无一失,还可以给缓存数据加上了「过期时间」,就算在这期间存在缓存数据不一致,有过期时间来兜底,这样也能达到最终一致。

问题:

「先更新数据库, 再删除缓存」其实是两个操作,前面的所有分析都是建立在这两个操作都能同时执行成功,但是删除缓存(第二个操作)的时候失败了,导致缓存中的数据是旧值

怎么解决?

重试机制

我们可以引入消息队列,将第二个操作(删除缓存)要操作的数据加入到消息队列,由消费者来操作数据。

  • 如果应用删除缓存失败 ,可以从消息队列中重新读取数据,然后再次删除缓存,这个就是重试机制。当然,如果重试超过的一定次数,还是没有成功,我们就需要向业务层发送报错信息了。
  • 如果删除缓存成功,就要把数据从消息队列中移除,避免重复操作,否则就继续重试。

可能疑惑的点

为什么是删除缓存,而不是更新缓存呢?

删除一个数据,相比更新一个数据更加轻量级,出问题的概率更小。在实际业务中,缓存的数据可能不是直接来自数据库表,也许来自多张底层数据表的聚合。

比如商品详情信息,在底层可能会关联商品表、价格表、库存表等,如果更新了一个价格字段,那么就要更新整个数据库,还要关联的去查询和汇总各个周边业务系统的数据,这个操作会非常耗时。 从另外一个角度,不是所有的缓存数据都是频繁访问的,更新后的缓存可能会长时间不被访问,所以说,从计算资源和整体性能的考虑,更新的时候删除缓存,等到下次查询命中再填充缓存,是一个更好的方案。

系统设计中有一个思想叫 Lazy Loading,适用于那些加载代价大的操作,删除缓存而不是更新缓存,就是懒加载思想的一个应用。

相关推荐
野猪亨利66738 分钟前
Qt day1
开发语言·数据库·qt
本就一无所有 何惧重新开始1 小时前
Redis技术应用
java·数据库·spring boot·redis·后端·缓存
isaki1371 小时前
qt day1
开发语言·数据库·qt
流星白龙1 小时前
【Qt】4.项目文件解析
开发语言·数据库·qt
小钻风33661 小时前
HTTPS是如何确保安全的
网络·数据库
CryptoPP2 小时前
获取越南股票市场列表(包含VN30成分股)实战指南
大数据·服务器·数据库·区块链
阿巴~阿巴~3 小时前
Redis重大版本演进全解析:从2.6到7.0
服务器·数据库·redis·ubuntu·缓存·centos
qq_404643344 小时前
MySQL中RUNCATE、DELETE、DROP 的基本介绍
数据库·mysql
像风一样!4 小时前
MySQL数据库如何实现主从复制
数据库·mysql
大白的编程日记.5 小时前
【MySQL】数据库表的CURD(二)
android·数据库·mysql