目标检测6:采用yolov8, RK3568推理的性能

最近有个小伙伴,问我rk3568上推理图片,1秒能达到多少?

本次采用模型为yolov8s.rknn,作了一次验证。

解析一段视频文件,1280*720, fps 24。读取视频文件,然后进行推理。

通过性能优化,发现推理,稳定的达到了FPS 13左右,NPU利用率在90%上下浮动。

根据官方的数据,yolov8s模型的性能在15.4 FPS。所以基本上也吻合了这个数据。

如果用yolov8n的话,实时推理15fps的视频流,低时延输出,在rk3568上应该是流畅的。

再压榨一下,NPU能达到97%,CPU占用243%,整体上FPS也没啥提升空间了。

相关推荐
AI军哥3 小时前
MySQL8的安装方法
人工智能·mysql·yolo·机器学习·deepseek
白熊18810 小时前
【计算机视觉】CV实战项目 - 基于YOLOv5的人脸检测与关键点定位系统深度解析
人工智能·yolo·计算机视觉
知来者逆14 小时前
计算机视觉——速度与精度的完美结合的实时目标检测算法RF-DETR详解
图像处理·人工智能·深度学习·算法·目标检测·计算机视觉·rf-detr
一勺汤14 小时前
YOLOv11改进-双Backbone架构:利用双backbone提高yolo11目标检测的精度
人工智能·yolo·双backbone·double backbone·yolo11 backbone·yolo 双backbone
豆芽81918 小时前
图解YOLO(You Only Look Once)目标检测(v1-v5)
人工智能·深度学习·学习·yolo·目标检测·计算机视觉
Eric.Lee202119 小时前
数据集-目标检测系列- F35 战斗机 检测数据集 F35 plane >> DataBall
人工智能·算法·yolo·目标检测·计算机视觉
早睡早起吧1 天前
目标检测篇---Fast R-CNN
人工智能·目标检测·计算机视觉·cnn
白熊1881 天前
【计算机视觉】CV实战项目 - 基于YOLOv5与DeepSORT的智能交通监控系统:原理、实战与优化
人工智能·yolo·计算机视觉
FPGA开源工坊2 天前
FPGA上实现YOLOv5的一般过程
yolo·fpga开发
早睡早起吧2 天前
目标检测篇---faster R-CNN
人工智能·python·目标检测·计算机视觉·cnn