目标检测6:采用yolov8, RK3568推理的性能

最近有个小伙伴,问我rk3568上推理图片,1秒能达到多少?

本次采用模型为yolov8s.rknn,作了一次验证。

解析一段视频文件,1280*720, fps 24。读取视频文件,然后进行推理。

通过性能优化,发现推理,稳定的达到了FPS 13左右,NPU利用率在90%上下浮动。

根据官方的数据,yolov8s模型的性能在15.4 FPS。所以基本上也吻合了这个数据。

如果用yolov8n的话,实时推理15fps的视频流,低时延输出,在rk3568上应该是流畅的。

再压榨一下,NPU能达到97%,CPU占用243%,整体上FPS也没啥提升空间了。

相关推荐
牙牙要健康4 小时前
【目标检测】【深度学习】【Pytorch版本】YOLOV3模型算法详解
pytorch·深度学习·目标检测
贤小二AI7 小时前
贤小二c#版Yolov5 yolov8 yolov10 yolov11自动标注工具 + 免python环境 GPU一键训练包
人工智能·深度学习·yolo
Merokes15 小时前
关于Gstreamer+MPP硬件加速推流问题:视频输入video0被占用
c++·音视频·rk3588
Spcarrydoinb17 小时前
基于yolo11的BGA图像目标检测
人工智能·目标检测·计算机视觉
zy_destiny21 小时前
【工业场景】用YOLOv12实现饮料类别识别
人工智能·python·深度学习·yolo·机器学习·计算机视觉·目标跟踪
阿_旭1 天前
目标检测中COCO评估指标中每个指标的具体含义说明:AP、AR
人工智能·目标检测·coco评估指标
卧式纯绿1 天前
每日文献(八)——Part one
人工智能·yolo·目标检测·计算机视觉·目标跟踪·cnn
HABuo1 天前
【YOLOv8】YOLOv8改进系列(12)----替换主干网络之StarNet
人工智能·深度学习·yolo·目标检测·计算机视觉
AdaCoding1 天前
YOLOv8架构详解
yolo·网络结构图
云卷云舒___________1 天前
【Ultralytics YOLO COCO 评估脚本 | 获得COCO评价指标】
yolo·coco·ultralytics