09. Spring AI 多模态框架抽象详解并接入Ollama演示多模态示例

前面的文章介绍的基本上都是单一数据格式的输入处理,比如输入文本输出文本的Chat模型、输入文本输出图片的图片模型、输入文本输出音频的模型等。本篇文章将介绍如何实现同时处理多种类型的数据格式?

什么是多模态

多模态是指模型同时理解和处理来自各种来源的信息的能力,包括文本、图像、音频和其他数据格式。

人类同时处理多种数据输入模式的知识。我们的学习方式,我们的经验都是多模态的。我们不仅有视觉,只有音频和文本。

现代教育之父约翰·阿莫斯·夸美纽斯在其著作中提到;

"All things that are naturally connected ought to be taught in combination"

"所有自然联系的事物都应该结合起来教授"

但是机器学习方法通常集中在为处理单一模式而量身定制的专用模型上。与人类的学习行为是相反的,然而新一波的多模态大型语言模型开始出现。多模态大型语言模型 (LLM) 功能使模型能够与其他模态(如图像、音频或视频)一起处理和生成文本。

Spring AI 集成哪些多模态大模型

  • OpenAI
    • gpt-4-visual-preview
    • gpt-4o
  • Google Vertex AI Gemini Pro Vision
  • Anthropic Claude3
  • Ollama LLaVA
  • Ollama balklava

Spring AI 多模态抽象框架

Spring AI Message API 提供了支持多模态的所有必要抽象,抽象架构如下;

消息 Messagecontent 字段主要用作文本输入,而可选 media 字段允许添加一个或多个不同模式的附加内容,例如图像、音频和视频。指定 MimeType 模态类型。根据使用LLMs的内容,媒体的数据字段可以是编码的原始媒体内容,也可以是内容的 URI。

但是需要注意:media 字段目前仅适用于用户输入消息(例如, UserMessage

Spring AI 接入Ollama 实现多模态示例

目前OpenAI 大模型仅 gpt-4-visual-previewgpt-4o 两个模型支持多模态,本人目前没有办法获取到两个模型可使用的OpenAI Key,所有使用替代的方案,使用Ollama跑一个本地 LLaVA 大模型进行代码演示。

引入ollama依赖包

java 复制代码
<dependency>
    <groupId>org.springframework.ai</groupId>
    <artifactId>spring-ai-ollama-spring-boot-starter</artifactId>
</dependency>

配置

yaml 复制代码
spring:
  ai:
    ollama:
      base-url: http://localhost:11434 # ollama地址
      chat:
        model: llava:7b #指定模型名称

代码

实现场景:让大模型描述一下图片的内容是什么?

java 复制代码
package org.ivy.controller;

import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.messages.Media;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.ollama.OllamaChatModel;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.util.MimeTypeUtils;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;

import java.util.List;

@RestController
public class MultiModalityController {

    @Value("classpath:img.png")
    private org.springframework.core.io.Resource imageResource;

    private final OllamaChatModel ollamaChatModel;

    public MultiModalityController(OllamaChatModel ollamaChatModel) {
        this.ollamaChatModel = ollamaChatModel;
    }

    @GetMapping("multi")
    public String multiModality(@RequestParam(defaultValue = "Explain what do you see on this picture?") String text) {
        ChatClient chatClient = ChatClient.builder(ollamaChatModel).build();
        var userMessage = new UserMessage(text, List.of(new Media(MimeTypeUtils.IMAGE_PNG, imageResource)));
        return chatClient.prompt(new Prompt(List.of(userMessage)))
                .call()
                .content();
    }

}

验证效果

由于使用本地机器运行的大模型,电脑配置原因返回结果比较慢。

示例代码

github.com/fangjieDevp...

总结

本文简单的对大模型的多模态进行认识,并使用Spring AI 接入 Ollama 调用 llava:7b 模型,对多模态进行实现并演示。下一篇文章将讲解如何在本地部署一个属于自己的大模型。

相关推荐
昨日之日20061 小时前
Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载
人工智能·whisper·语音识别
浮生如梦_1 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
深度学习lover1 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
热爱跑步的恒川2 小时前
【论文复现】基于图卷积网络的轻量化推荐模型
网络·人工智能·开源·aigc·ai编程
阡之尘埃4 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
孙同学要努力6 小时前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
Eric.Lee20216 小时前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
其实吧37 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab
丕羽7 小时前
【Pytorch】基本语法
人工智能·pytorch·python
ctrey_7 小时前
2024-11-1 学习人工智能的Day20 openCV(2)
人工智能·opencv·学习