09. Spring AI 多模态框架抽象详解并接入Ollama演示多模态示例

前面的文章介绍的基本上都是单一数据格式的输入处理,比如输入文本输出文本的Chat模型、输入文本输出图片的图片模型、输入文本输出音频的模型等。本篇文章将介绍如何实现同时处理多种类型的数据格式?

什么是多模态

多模态是指模型同时理解和处理来自各种来源的信息的能力,包括文本、图像、音频和其他数据格式。

人类同时处理多种数据输入模式的知识。我们的学习方式,我们的经验都是多模态的。我们不仅有视觉,只有音频和文本。

现代教育之父约翰·阿莫斯·夸美纽斯在其著作中提到;

"All things that are naturally connected ought to be taught in combination"

"所有自然联系的事物都应该结合起来教授"

但是机器学习方法通常集中在为处理单一模式而量身定制的专用模型上。与人类的学习行为是相反的,然而新一波的多模态大型语言模型开始出现。多模态大型语言模型 (LLM) 功能使模型能够与其他模态(如图像、音频或视频)一起处理和生成文本。

Spring AI 集成哪些多模态大模型

  • OpenAI
    • gpt-4-visual-preview
    • gpt-4o
  • Google Vertex AI Gemini Pro Vision
  • Anthropic Claude3
  • Ollama LLaVA
  • Ollama balklava

Spring AI 多模态抽象框架

Spring AI Message API 提供了支持多模态的所有必要抽象,抽象架构如下;

消息 Messagecontent 字段主要用作文本输入,而可选 media 字段允许添加一个或多个不同模式的附加内容,例如图像、音频和视频。指定 MimeType 模态类型。根据使用LLMs的内容,媒体的数据字段可以是编码的原始媒体内容,也可以是内容的 URI。

但是需要注意:media 字段目前仅适用于用户输入消息(例如, UserMessage

Spring AI 接入Ollama 实现多模态示例

目前OpenAI 大模型仅 gpt-4-visual-previewgpt-4o 两个模型支持多模态,本人目前没有办法获取到两个模型可使用的OpenAI Key,所有使用替代的方案,使用Ollama跑一个本地 LLaVA 大模型进行代码演示。

引入ollama依赖包

java 复制代码
<dependency>
    <groupId>org.springframework.ai</groupId>
    <artifactId>spring-ai-ollama-spring-boot-starter</artifactId>
</dependency>

配置

yaml 复制代码
spring:
  ai:
    ollama:
      base-url: http://localhost:11434 # ollama地址
      chat:
        model: llava:7b #指定模型名称

代码

实现场景:让大模型描述一下图片的内容是什么?

java 复制代码
package org.ivy.controller;

import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.messages.Media;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.ollama.OllamaChatModel;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.util.MimeTypeUtils;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;

import java.util.List;

@RestController
public class MultiModalityController {

    @Value("classpath:img.png")
    private org.springframework.core.io.Resource imageResource;

    private final OllamaChatModel ollamaChatModel;

    public MultiModalityController(OllamaChatModel ollamaChatModel) {
        this.ollamaChatModel = ollamaChatModel;
    }

    @GetMapping("multi")
    public String multiModality(@RequestParam(defaultValue = "Explain what do you see on this picture?") String text) {
        ChatClient chatClient = ChatClient.builder(ollamaChatModel).build();
        var userMessage = new UserMessage(text, List.of(new Media(MimeTypeUtils.IMAGE_PNG, imageResource)));
        return chatClient.prompt(new Prompt(List.of(userMessage)))
                .call()
                .content();
    }

}

验证效果

由于使用本地机器运行的大模型,电脑配置原因返回结果比较慢。

示例代码

github.com/fangjieDevp...

总结

本文简单的对大模型的多模态进行认识,并使用Spring AI 接入 Ollama 调用 llava:7b 模型,对多模态进行实现并演示。下一篇文章将讲解如何在本地部署一个属于自己的大模型。

相关推荐
极客先躯7 分钟前
高级java每日一道面试题-2025年7月15日-基础篇[LangChain4j]-如何集成国产大模型(如通义千问、文心一言、智谱 AI)?
java·人工智能·langchain·文心一言·异常处理·密钥管理·参数调优
阿星AI工作室14 分钟前
我搭了一个 AI 写作机器人,每天自动写文章发到公众号草稿箱
人工智能·程序员
陈天伟教授14 分钟前
人工智能应用- 材料微观:04.微观结构:金属疲劳
人工智能·神经网络·算法·机器学习·推荐算法
未来之窗软件服务27 分钟前
AI人工智能(五)天猫精灵部署开发自己服务—东方仙盟练气期
人工智能·仙盟创梦ide·东方仙盟
用户5798547697132 分钟前
03:多 LLM 提供商统一接入:Provider 模式与 LiteLLM 实践
人工智能
kjmkq37 分钟前
香港领先GEO服务商 XOOER 专注GEO/AEO赋能品牌全球扩张
人工智能
陈天伟教授42 分钟前
人工智能应用- 材料微观:01. 微观结构的重要性
人工智能·神经网络·算法·机器学习·推荐算法
聊聊科技43 分钟前
用清唱歌词音频来创作,原创音乐人通过AI编曲软件快速制作歌曲的编曲伴奏
人工智能
盲盒Q44 分钟前
《内存之茧》
数据结构·人工智能·ruby
狮子座明仔1 小时前
REDSearcher:如何用30B参数的小模型,在深度搜索上击败GPT-o3和Gemini?
人工智能·gpt·深度学习·microsoft·语言模型·自然语言处理