C. Rooks Defenders(树状数组)

You have a square chessboard of size n×nn×n. Rows are numbered from top to bottom with numbers from 11 to nn, and columns --- from left to right with numbers from 11 to nn. So, each cell is denoted with pair of integers (x,y)(x,y) (1≤x,y≤n1≤x,y≤n), where xx is a row number and yy is a column number.

You have to perform qq queries of three types:

  • Put a new rook in cell (x,y)(x,y).
  • Remove a rook from cell (x,y)(x,y). It's guaranteed that the rook was put in this cell before.
  • Check if each cell of subrectangle (x1,y1)−(x2,y2)(x1,y1)−(x2,y2) of the board is attacked by at least one rook.

Subrectangle is a set of cells (x,y)(x,y) such that for each cell two conditions are satisfied: x1≤x≤x2x1≤x≤x2 and y1≤y≤y2y1≤y≤y2.

Recall that cell (a,b)(a,b) is attacked by a rook placed in cell (c,d)(c,d) if either a=ca=c or b=db=d. In particular, the cell containing a rook is attacked by this rook.

Input

The first line contains two integers nn and qq (1≤n≤1051≤n≤105, 1≤q≤2⋅1051≤q≤2⋅105) --- the size of the chessboard and the number of queries, respectively.

Each of the following qq lines contains description of a query. Description begins with integer tt (t∈{1,2,3}t∈{1,2,3}) which denotes type of a query:

  • If t=1t=1, two integers xx and yy follows (1≤x,y≤n1≤x,y≤n) --- coordinated of the cell where the new rook should be put in. It's guaranteed that there is no rook in the cell (x,y)(x,y) at the moment of the given query.
  • If t=2t=2, two integers xx and yy follows (1≤x,y≤n1≤x,y≤n) --- coordinates of the cell to remove a rook from. It's guaranteed that there is a rook in the cell (x,y)(x,y) at the moment of the given query.
  • If t=3t=3, four integers x1,y1,x2x1,y1,x2 and y2y2 follows (1≤x1≤x2≤n1≤x1≤x2≤n, 1≤y1≤y2≤n1≤y1≤y2≤n) --- subrectangle to check if each cell of it is attacked by at least one rook.

It's guaranteed that among qq queries there is at least one query of the third type.

Output

Print the answer for each query of the third type in a separate line. Print "Yes" (without quotes) if each cell of the subrectangle is attacked by at least one rook.

Otherwise print "No" (without quotes).

Example

input

Copy

复制代码
8 10
1 2 4
3 6 2 7 2
1 3 2
3 6 2 7 2
1 4 3
3 2 6 4 8
2 4 3
3 2 6 4 8
1 4 8
3 2 6 4 8

output

Copy

复制代码
No
Yes
Yes
No
Yes

Note

Consider example. After the first two queries the board will look like the following picture (the letter RR denotes cells in which rooks are located, the subrectangle of the query of the third type is highlighted in green):

Chessboard after performing the third and the fourth queries:

正在上传...重新上传取消正在上传...重新上传取消

Chessboard after performing the fifth and the sixth queries:

正在上传...重新上传取消正在上传...重新上传取消

Chessboard after performing the seventh and the eighth queries:

Chessboard after performing the last two queries:

正在上传...重新上传取消正在上传...重新上传取消

思路:

1,能不能撞击的关键在于行列是否出现过

2,用前缀和和差分来实现

代码:

复制代码
#include<bits/stdc++.h>
using namespace std;
#define int long long
#pragma GCC optimize(2)
#pragma GCC optimize(3,"Ofast","inline")
const int maxj=2e5+100,mod=1e9+7,inf=0x7f7f7f7f7f7f7f7f;
template<class t> void read(t &res){
    char c;t flag=1;
    while((c=getchar())<'0'||c>'9')if(c=='-')flag=-1;res=c-'0';
    while((c=getchar())>='0'&&c<='9')res+=c-'0';res*=flag;
}
int n,q;
int sum1[maxj],sum2[maxj];
struct bit{
    int lowbit(int x){return x&-x;}
    void add(int x,int c,int sum[]){while(x <= n)sum[x]+=c,x+=lowbit(x);}
    int getsum(int x,int sum[]){int res=0;while(x)res+=sum[x],x-=lowbit(x);return res;}
}t;
int x[maxj],y[maxj];
void solve(){  //对行列做标记
    cin>>n>>q;
    while(q--){
        int v;
        cin>>v;
        if(v==1){
            int l,r;
            cin>>l>>r;
            x[l]++;y[r]++;
            if(x[l]==1)t.add(l,1,sum1);//可多次放,多次拿
            if(y[r]==1)t.add(r,1,sum2);
        }else if(v==2){
            int l,r;
            cin>>l>>r;
            x[l]--;y[r]--;
            if(x[l]==0)t.add(l,-1,sum1);
            if(y[r]==0)t.add(r,-1,sum2);
        }else{
            int l,r,ll,rr;
            cin>>l>>r>>ll>>rr;
            if(t.getsum(ll,sum1)-t.getsum(l-1,sum1)==ll-l+1||t.getsum(rr,sum2)-t.getsum(r-1,sum2)==rr-r+1)
                cout<<"Yes"<<'\n';
            else 
                cout<<"No"<<'\n';
        }
    }
}
int32_t main(){
    ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
#ifdef LOCAL
    freopen("input.txt", "r", stdin);
    freopen("output.txt", "w", stdout);//a为add
#endif
    int t;
    t=1;
    while(t--)solve();
    return 0;
}
相关推荐
程序员-King.17 分钟前
day86——有效的字母异位词(LeetCode-242)
算法·字符串
potato_may24 分钟前
C语言第3讲:分支和循环(上)—— 程序的“决策”与“重复”之旅
c语言·开发语言
kalvin_y_liu37 分钟前
【MES架构师与C#高级工程师(设备控制方向)两大职业路径的技术】
开发语言·职场和发展·c#·mes
xxxxxxllllllshi41 分钟前
Java 代理模式深度解析:从静态到动态,从原理到实战
java·开发语言·笔记·算法·代理模式
计算机毕业设计指导1 小时前
从零开始构建HIDS主机入侵检测系统:Python Flask全栈开发实战
开发语言·python·flask
步行cgn1 小时前
SqlSessionFactory 的作用
java·开发语言
Starry_hello world1 小时前
C++ 二分算法(1)
c++·算法·有问必答
数据知道1 小时前
Go语言:Go 语言中的命令行参数操作详解
开发语言·后端·golang·go语言
小杨勇敢飞2 小时前
拼图小游戏开发日记 | Day3(已完结)
java·数据结构·算法
眠りたいです2 小时前
基于脚手架微服务的视频点播系统-脚手架开发部分-jsoncpp,protobuf,Cpp-httplib与WebSocketpp中间件介绍与使用
c++·websocket·微服务·中间件·json·protobuf·cpp-httplib