TensorFlow 1.x 版本保存模型的三种方式的优缺点

在 TensorFlow 1.x 版本中,有三种常用的模型保存方式:Checkpoints,tf.saved_model(SavedModel 格式),以及 Freeze Graph。以下是每种方式的简要说明、优缺点。

  1. Checkpoints

Checkpoints 是 TensorFlow 中比较早期的模型保存方式。它通过 tf.train.Saver() 实例保存和恢复模型的参数(权重和偏置)。

优点

  • 简单易用,只需创建 tf.train.Saver() 实例并调用 saverestore 方法。
  • 保存空间相对较小,只保存参数值。

缺点

  • 只保存模型的参数值(variables),不保存计算图结构,因此在恢复时,需要先重新定义模型结构。
  • 依赖于原始的 Python 代码来重新构建计算图。
  • 不方便跨语言或平台部署,因为缺乏计算图的描述。
  1. tf.saved_model(SavedModel 格式)

SavedModel 格式是 TensorFlow 更推荐的模型保存格式。它是一个包含完整的 TensorFlow 程序的目录,包括权重和图结构。

优点

  • 完整保存富集成的模型,包括计算图和参数值。
  • 可跨平台部署,适合在 TensorFlow Serving、TensorFlow Lite、TensorFlow.js 或 TensorFlow Hub 上使用。
  • 支持模型的版本管理。

缺点

  • 文件较大,因为包含了完整的图结构和参数值。
  • 可能需要更复杂的代码来保存和恢复。
  1. Freeze Graph

Freeze Graph 是将 TensorFlow 计算图和参数冻结为一个单一文件的过程。这通过将 GraphDef 和 Checkpoints 文件合并,并转换成常量,来创建一个不可变的 GraphDef 文件。

优点

  • 产生一个全部操作都转换成常量的不变计算图,适合性能优化和模型部署。
  • 文件大小减少,因为所有变量被转化为常量,移动了不必要的元数据和操作。

缺点

  • 在冻结过程中,可能会丢失图结构中的一些信息,这可能影响之后对模型的微调和维护。
  • 一旦冻结,图内的节点不可更改,这意味着不能对模型的结构进行调整。
  • 工具链比较复杂,通常需要通过 tf.graph_util.convert_variables_to_constants 函数来完成。

总的来说,每种保存方法都适用于不同的场景。如果你需要不断迭代模型并将结果保存为 Checkpoints,则 Checkpoints 是个好选项;如果你打算在不同的平台上部署模型,则推荐使用 SavedModel 格式;如果你要将模型部署到生产环境中,并希望文件尽可能小,则可能需要使用 Freeze Graph 来冻结模型。在 TensorFlow 2.x 中,官方强烈推荐使用 SavedModel 格式,因为它的API设计更加统一、简洁。

相关推荐
野蛮的大西瓜9 分钟前
开源呼叫中心中,如何将ASR与IVR菜单结合,实现动态的IVR交互
人工智能·机器人·自动化·音视频·信息与通信
CountingStars61934 分钟前
目标检测常用评估指标(metrics)
人工智能·目标检测·目标跟踪
tangjunjun-owen42 分钟前
第四节:GLM-4v-9b模型的tokenizer源码解读
人工智能·glm-4v-9b·多模态大模型教程
冰蓝蓝1 小时前
深度学习中的注意力机制:解锁智能模型的新视角
人工智能·深度学习
橙子小哥的代码世界1 小时前
【计算机视觉基础CV-图像分类】01- 从历史源头到深度时代:一文读懂计算机视觉的进化脉络、核心任务与产业蓝图
人工智能·计算机视觉
黄公子学安全1 小时前
Java的基础概念(一)
java·开发语言·python
新加坡内哥谈技术2 小时前
苏黎世联邦理工学院与加州大学伯克利分校推出MaxInfoRL:平衡内在与外在探索的全新强化学习框架
大数据·人工智能·语言模型
程序员一诺2 小时前
【Python使用】嘿马python高级进阶全体系教程第10篇:静态Web服务器-返回固定页面数据,1. 开发自己的静态Web服务器【附代码文档】
后端·python
小木_.2 小时前
【Python 图片下载器】一款专门为爬虫制作的图片下载器,多线程下载,速度快,支持续传/图片缩放/图片压缩/图片转换
爬虫·python·学习·分享·批量下载·图片下载器
fanstuck2 小时前
Prompt提示工程上手指南(七)Prompt编写实战-基于智能客服问答系统下的Prompt编写
人工智能·数据挖掘·openai