相机实时进行透视变换矫正 并用streamlit做个界面

python 复制代码
import cv2
import numpy as np

def get_rectangle_corners(image, resize_height, prev_rectangle=None, stability_factor=12):
    def process_image(image, height):
        ratio = image.shape[0] / height
        image = cv2.resize(image, (int(image.shape[1] / ratio), height))
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        gray = cv2.GaussianBlur(gray, (3, 3), 0)
        edges = cv2.Canny(gray, 25, 125)
        return edges, ratio

    def find_rectangle(edges):
        contours, _ = cv2.findContours(edges.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
        contours = sorted(contours, key=cv2.contourArea, reverse=True)[:5]

        for contour in contours:
            peri = cv2.arcLength(contour, True)
            approx = cv2.approxPolyDP(contour, 0.02 * peri, True)

            if len(approx) == 4:
                return approx

    edges, ratio = process_image(image, resize_height)
    rectangle = find_rectangle(edges)

    if rectangle is not None:
        rectangle = rectangle.reshape(4, 2) * ratio
        rectangle = [[int(point[0]), int(point[1])] for point in rectangle]

        # if prev rectangle exists and the change is smaller than the stability factor, use the previous rectangle
        if prev_rectangle is not None:
            diff = np.abs(np.array(prev_rectangle) - np.array(rectangle))
            if np.all(diff < stability_factor):
                return prev_rectangle

        return rectangle
    else:
        return prev_rectangle  # if no rectangle detected, use the previous one
prev_rectangle = None
dst = np.float32([[0, 0], [0, 488],[337, 488],[337, 0]])
cap = cv2.VideoCapture(0)
while True:
    ret, frame = cap.read()
    if ret:
        rectangle = get_rectangle_corners(frame, 500, prev_rectangle)
        prev_rectangle = rectangle  # save the rectangle for the next frame
        print(rectangle)
        if rectangle is not None:
            src = np.float32(rectangle)
            m = cv2.getPerspectiveTransform(src, dst)
            result = cv2.warpPerspective(frame, m, (337, 488))

            cv2.imshow("src", frame)
            cv2.imshow("result", result)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()

streamlit界面

python 复制代码
import streamlit as st
from cnstd import CnStd
from cnocr import CnOcr
import cv2
import numpy as np
import pandas as pd
from PIL import Image

def get_rectangle_corners(image, resize_height, prev_rectangle=None, stability_factor=12):
    def process_image(image, height):
        ratio = image.shape[0] / height
        image = cv2.resize(image, (int(image.shape[1] / ratio), height))
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        gray = cv2.GaussianBlur(gray, (3, 3), 0)
        edges = cv2.Canny(gray, 50, 100)
        return edges, ratio

    def find_rectangle(edges):
        contours, _ = cv2.findContours(edges.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
        contours = sorted(contours, key=cv2.contourArea, reverse=True)[:1]

        for contour in contours:
            peri = cv2.arcLength(contour, True)
            approx = cv2.approxPolyDP(contour, 0.02 * peri, True)

            if len(approx) == 4:
                return approx

    edges, ratio = process_image(image, resize_height)
    rectangle = find_rectangle(edges)

    if rectangle is not None:
        rectangle = rectangle.reshape(4, 2) * ratio
        rectangle = [[int(point[0]), int(point[1])] for point in rectangle]


        if prev_rectangle is not None:
            diff = np.abs(np.array(prev_rectangle) - np.array(rectangle))
            if np.all(diff < stability_factor):
                return prev_rectangle

        return rectangle
    else:
        return prev_rectangle  # if no rectangle detected, use the previous one

# Code where the two scripts are fused together
dst = np.float32([[0, 0], [0, 588],[640, 588],[640, 0]])
prev_rectangle = None
cap = cv2.VideoCapture(0)
std = CnStd()
cn_ocr = CnOcr()

st.sidebar.title("易读写")
option = st.sidebar.selectbox('请选择要运行的功能', ('显示矫正后画面', '图片转文字'))
# 定义两个图像显示窗口
FRAME_WINDOW_RAW = st.image([])
FRAME_WINDOW_TRANSFORMED = st.image([])
# 需要实时显示矫正后画面
if option == '显示矫正后画面':
    run = st.checkbox('开始运行')
    FRAME_WINDOW = st.image([])
    alpha = st.sidebar.slider('亮度调节 Brightness', min_value=0.0, max_value=3.0,
                              value=1.0)  # Add a slider for brightness
    angle = st.sidebar.slider('视角调节 Rotation', 0, 360, 0)  # Add a slider for rotation
    if run:
        while True:
            ret, frame = cap.read()
            if not ret:
                st.write("Can't receive frame (Stream end?). Exiting..")
                break
            rectangle = get_rectangle_corners(frame, 500, prev_rectangle)
            prev_rectangle = rectangle  # save the rectangle for the next frame
            if rectangle is not None:
                src = np.float32(rectangle)
                m = cv2.getPerspectiveTransform(src, dst)
                result = cv2.warpPerspective(frame, m, (640, 588))

                raw_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)  # Convert BGR to RGB for raw frame
                img_raw = Image.fromarray(raw_frame)
                FRAME_WINDOW_RAW.image(img_raw)  # Show raw frame

                result = cv2.cvtColor(result, cv2.COLOR_BGR2RGB)  # Convert BGR to RGB for transformed
                result = cv2.convertScaleAbs(result, alpha=alpha, beta=0)
                img_transformed = Image.fromarray(result)
                FRAME_WINDOW_TRANSFORMED.image(img_transformed)  # Show transformed result
    else:
        st.write('Stopped')
    cap.release()

elif option == '图片转文字':
    uploaded_file = st.sidebar.file_uploader("选择一个图片文件")

    if uploaded_file is not None:
        img = Image.open(uploaded_file)
        st.image(img, caption='Uploaded Image.', use_column_width=True)

        if st.sidebar.button('开始运行'):
            # Copy and adapt your code here
            with st.spinner('OCR is in progress...'):
                np_img = np.array(img)  # Convert PIL Image to numpy array
                box_infos = std.detect(np_img)

                text = []
                for box_info in box_infos['detected_texts']:
                    cropped_img = box_info['cropped_img']
                    ocr_res = cn_ocr.ocr_for_single_line(cropped_img)
                    text.append(ocr_res['text'])

                st.subheader("Extracted text:")
                for line in text:
                    st.write(line)

            st.success('Text extraction complete')
相关推荐
跳跳糖炒酸奶5 分钟前
第四章、Isaacsim在GUI中构建机器人(2):组装一个简单的机器人
人工智能·python·算法·ubuntu·机器人
AI.NET 极客圈10 分钟前
AI与.NET技术实操系列(四):使用 Semantic Kernel 和 DeepSeek 构建AI应用
人工智能·.net
Debroon13 分钟前
应华为 AI 医疗军团之战,各方动态和反应
人工智能·华为
俊哥V15 分钟前
阿里通义千问发布全模态开源大模型Qwen2.5-Omni-7B
人工智能·ai
果冻人工智能20 分钟前
每一条广告都只为你而生: 用 人工智能 颠覆广告行业的下一步
人工智能
掘金安东尼24 分钟前
GPT-4.5 被 73% 的人误认为人类,“坏了?!我成替身了!”
人工智能·程序员
掘金一周1 小时前
金石焕新程 >> 瓜分万元现金大奖征文活动即将回归 | 掘金一周 4.3
前端·人工智能·后端
白雪讲堂1 小时前
AI搜索品牌曝光资料包(精准适配文心一言/Kimi/DeepSeek等场景)
大数据·人工智能·搜索引擎·ai·文心一言·deepseek
斯汤雷1 小时前
Matlab绘图案例,设置图片大小,坐标轴比例为黄金比
数据库·人工智能·算法·matlab·信息可视化
ejinxian1 小时前
Spring AI Alibaba 快速开发生成式 Java AI 应用
java·人工智能·spring