【代码随想录】【算法训练营】【第39天】 [62]不同路径 [63]不同路径II [343]整数拆分 [96]不同的二叉搜索树

前言

思路及算法思维,指路 代码随想录

题目来自 LeetCode

day 39,周六,坚持不住了~

题目详情

[62] 不同路径

题目描述

62 不同路径

解题思路

前提:每次只能向下或者向右移动一步

思路:动态规划, dp[i][j]: 到达(i, j)位置的路径数量, dp[i][j] = dp[i-1][j] + dp[i][j-1] 。

重点:dp数组的定义,以及 推导公式。

代码实现

C语言
动态规划dp[i][j]

动态规划 dp[i][j]: 到达(i, j)位置的路径数量, dp[i][j] = dp[i-1][j] + dp[i][j-1];

c 复制代码
// dp[i][j]: 到达(i, j)位置的路径数量, dp[i][j] = dp[i-1][j] + dp[i][j-1];
int uniquePaths(int m, int n) {
    int dp[m][n];
    // 动态数组初始化
    for (int i = 0; i < m; i++) {
        dp[i][0] = 1;
    }
    for (int j = 0; j < n; j++) {
        dp[0][j] = 1;
    }
    // 从前到后,遍历其余位置
    for (int i = 1; i < m; i++) {
        for (int j = 1; j < n; j++) {
            dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
        }
    }
    return dp[m - 1][n - 1];
}
动态规划dp[i]

动态规划 dp[i][j]压缩空间为dp[i], dp[i] = dp[i] + dp[i-1]

c 复制代码
// dp[i][j]: 到达(i, j)位置的路径数量, dp[i][j] = dp[i-1][j] + dp[i][j-1];
// 压缩空间为dp[i], dp[i] = dp[i] + dp[i-1]
int uniquePaths(int m, int n) {
    int dp[n];
    // 动态数组初始化
    for (int j = 0; j < n; j++) {
        dp[j] = 1;
    }
    // 从前到后,按行更新数组
    for (int i = 1; i < m; i++) {
        for (int j = 1; j < n; j++) {
            dp[j] = dp[j - 1] + dp[j];
        }
    }
    return dp[n - 1];
}

[63] 不同路径II

题目描述

63 不同路径II

解题思路

前提:每次只能向下或者向右移动一步,且可能有障碍

思路:动态规划:d[i][j]: 到达(i, j)位置的路径数量, dp[i][j] = dp[i-1][j] + dp[i][j-1] 。

重点:dp数组的定义,以及 推导公式。

代码实现

C语言
动态规划dp[i][j]

动态规划:d[i][j]: 到达(i, j)位置的路径数量, dp[i][j] = dp[i-1][j] + dp[i][j-1]

c 复制代码
// d[i][j]: 到达(i, j)位置的路径数量, dp[i][j] = dp[i-1][j] + dp[i][j-1]
int uniquePathsWithObstacles(int** obstacleGrid, int obstacleGridSize, int* obstacleGridColSize) {
    //定义dp数组
    int dp[obstacleGridSize][*obstacleGridColSize];
    //初始化dp数组
    int found = false;
    for (int i = 0; i < obstacleGridSize; i++) {
        if ((found != true) && (obstacleGrid[i][0] != 1)) {
            dp[i][0] = 1;
        } else {
            found = true;
            dp[i][0] = 0;
        }
        
    }
    found = false;
    for (int j = 0; j < *obstacleGridColSize; j++) {
        if ((found != true) && (obstacleGrid[0][j] != 1)) {
            dp[0][j] = 1;
        } else {
            found = true;
            dp[0][j] = 0;
        }
    }
    // 从上到下,从左到右,遍历
    for (int i = 1; i < obstacleGridSize; i++) {
        for (int j = 1; j < *obstacleGridColSize; j++) {
            // 判断是否为障碍
            if (obstacleGrid[i][j] != 1) {
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            } else {
                dp[i][j] = 0;
            }
        } 
    }
    return dp[obstacleGridSize - 1][*obstacleGridColSize - 1];
}
动态规划dp[i]

d[i][j]压缩为d[i], dp[i] = dp[i-1] + dp[i]

c 复制代码
// d[i][j]: 到达(i, j)位置的路径数量, dp[i][j] = dp[i-1][j] + dp[i][j-1]
// 压缩为d[i], dp[i] = dp[i-1] + dp[i]
int uniquePathsWithObstacles(int** obstacleGrid, int obstacleGridSize, int* obstacleGridColSize) {
    //定义dp数组
    int dp[*obstacleGridColSize];
    //初始化dp数组
    int found = false;
    for (int j = 0; j < *obstacleGridColSize; j++) {
        if ((found != true) && (obstacleGrid[0][j] != 1)) {
            dp[j] = 1;
        } else {
            found = true;
            dp[j] = 0;
        }
    }
    // 从上到下,从左到右,遍历
    for (int i = 1; i < obstacleGridSize; i++) {
        for (int j = 0; j < *obstacleGridColSize; j++) {
            // 判断是否为障碍
            if (obstacleGrid[i][j] == 1) {
                dp[j] = 0;
            } else if (j > 0) {
                dp[j] = dp[j - 1] + dp[j];
            }
        } 
    }
    return dp[*obstacleGridColSize - 1];
}

[343] 整数拆分

题目描述

343 整数拆分

解题思路

前提:拆分为 k 个 正整数 的和( k >= 2 )

思路:动态规划, dp[i]: i的最大乘积, 拆分为两数或者多数之积, d[i] = max(j*(i-j), jdp[i-j]); 遍历j时, 取各个dp[i]的最大值, 故dp[i] = max(dp[i], j (i-j), j*dp[i-j])。

重点:dp数组的定义,以及 推导公式。

代码实现

C语言
动态规划
c 复制代码
// dp[i]: i的最大乘积, 拆分为两数或者多数之积, d[i] = max(j*(i-j), j*dp[i-j])
// 遍历j时, 取各个dp[i]的最大值
// 故dp[i] = max(dp[i], j*(i-j), j*dp[i-j])

int max(int p1, int p2)
{
    return p1 > p2 ? p1 : p2;
}

int integerBreak(int n) {
    // 定义dp数组
    int dp[n + 1];
    // 初始化
    for (int i = 0; i < (n + 1); i++) {
        dp[i] = 0;
    }
    dp[1] = 1;
    // 从小到大遍历整数
    for (int i = 2; i <= n; i++) {
        for (int j = 1; j < i; j++) {
            dp[i] = max(dp[i], max((j * dp[i - j]), j * (i - j)));
        }
    }
    return dp[n];
}
动态规划 优化遍历
c 复制代码
// dp[i]: i的最大乘积, 拆分为两数或者多数之积, d[i] = max(j*(i-j), j*dp[i-j])
// 遍历j时, 取各个dp[i]的最大值
// 故dp[i] = max(dp[i], j*(i-j), j*dp[i-j])

int max(int p1, int p2)
{
    return p1 > p2 ? p1 : p2;
}

int integerBreak(int n) {
    // 定义dp数组
    int dp[n + 1];
    // 初始化
    for (int i = 0; i < (n + 1); i++) {
        dp[i] = 0;
    }
    dp[1] = 1;
    // 从小到大遍历整数
    for (int i = 2; i <= n; i++) {
        // 优化遍历
        for (int j = 1; j <= i / 2; j++) {
            dp[i] = max(dp[i], max((j * dp[i - j]), j * (i - j)));
        }
    }
    return dp[n];
}

[96] 不同的二叉搜索树

题目描述

96 不同的二叉搜索树

解题思路

前提:查分二叉树的形态,观察联系

思路:动态规划, dp[i]表示i个结点的二叉搜索树的种数, dp[i] += dp[j] * dp[i - j - 1],其中左子树结点数为j, 右子树结点数为i-j-1。

重点:观察二叉树结点数量之间形态的联系,dp数组的定义,以及 推导公式。

代码实现

C语言
动态规划
c 复制代码
// dp[i]表示i个结点的二叉搜索树的种数, dp[i] += dp[j] * dp[i - j - 1]
// 左子树结点数为j, 右子树结点数为i-j-1
int numTrees(int n) {
    // 定义dp数组
    int dp[n + 1];
    // 初始化
    for (int i = 0; i <= n; i++) {
        dp[i] = 0;
    }
    dp[0] = 1;
    // 从小到大遍历n
    for (int i = 1; i <= n; i++) {
        for (int j = 0; j < i; j++) {
            dp[i] += dp[j] * dp[i - j - 1];
        }
    }
    return dp[n];
}

今日收获

  1. 动态规划五步曲:确定dp数组(dp table)以及下标的含义;确定递推公式;dp数组如何初始化;确定遍历顺序;举例推导dp数组。
相关推荐
算法歌者5 分钟前
[算法]入门1.矩阵转置
算法
林开落L20 分钟前
前缀和算法习题篇(上)
c++·算法·leetcode
远望清一色21 分钟前
基于MATLAB边缘检测博文
开发语言·算法·matlab
tyler_download22 分钟前
手撸 chatgpt 大模型:简述 LLM 的架构,算法和训练流程
算法·chatgpt
SoraLuna43 分钟前
「Mac玩转仓颉内测版7」入门篇7 - Cangjie控制结构(下)
算法·macos·动态规划·cangjie
我狠狠地刷刷刷刷刷1 小时前
中文分词模拟器
开发语言·python·算法
鸽鸽程序猿1 小时前
【算法】【优选算法】前缀和(上)
java·算法·前缀和
九圣残炎1 小时前
【从零开始的LeetCode-算法】2559. 统计范围内的元音字符串数
java·算法·leetcode
YSRM1 小时前
Experimental Analysis of Dedicated GPU in Virtual Framework using vGPU 论文分析
算法·gpu算力·vgpu·pci直通
韭菜盖饭2 小时前
LeetCode每日一题3261---统计满足 K 约束的子字符串数量 II
数据结构·算法·leetcode