神经网络模型---ResNet

一、ResNet

1.导入包

python 复制代码
import tensorflow as tf
from tensorflow.keras import layers, models, datasets, optimizers

optimizers是用于更新模型参数以最小化损失函数的算法

2.加载数据集、归一化、转为独热编码的内容一致

3.增加颜色通道

python 复制代码
train_images = train_images[..., tf.newaxis].astype("float32")
test_images = test_images[..., tf.newaxis].astype("float32")

在train_images和test_images最后一个维度增加一个新的维度
这两行代码还将图像数据转换为浮点数类型

4.定义一个用于图像预处理的模型

4.1创造模型

python 复制代码
preprocessing = models.Sequential([

4.2添加一个卷积层,该层有3个1x1的卷积核,激活函数为relu,并且指定了输入形状为28x28像素的单通道图像

python 复制代码
layers.Conv2D(3, (1, 1), activation='relu', input_shape=(28, 28, 1)),

4.3 将图像尺寸增加到56x56

python 复制代码
    layers.UpSampling2D((2, 2)), 
])

5.应用预处理模型到训练和测试图像上

python 复制代码
train_images = preprocessing(train_images)
test_images = preprocessing(test_images)

6.加载ResNet50模型并冻结所有层

python 复制代码
base_model=tf.keras.applications.ResNet50(weights='imagenet',include_top=False,input_shape=(56, 56, 3))

ResNet50是一个预训练的卷积神经网络模型,
参数1:加载模型的权重
参数2:是否包括模型顶部的全连接层,设置False意味着不包括这些层,由此可以得到模型的特征提取部分
参数3:输入图像的尺寸
base_model.trainable = False
使ResNet50模型的所有层都不可训练

7.创建模型

python 复制代码
model = models.Sequential([

7.1放在模型的第一层添加到序列中,用于提取图像特征

python 复制代码
base_model,

7.2在Keras中添加的一个全局平均池化层

python 复制代码
layers.GlobalAveragePooling2D(),

7.3在Keras中添加的一个全连接层,使用softmax为激活函数

python 复制代码
    layers.Dense(10, activation='softmax')
])

8.编译模型

python 复制代码
model.compile(optimizer=optimizers.Adam(),
              loss='categorical_crossentropy',
              metrics=['accuracy'])

  • 和上一个博客的模型的内容一样,此处省略

9.训练模型

python 复制代码
model.fit(train_images, train_labels, epochs=10, batch_size=64, validation_data=(test_images, test_labels))

结果:

10.保存文件

python 复制代码
model.save('ResNet.h5')

结果:

相关推荐
Blossom.1181 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
scdifsn2 小时前
动手学深度学习12.7. 参数服务器-笔记&练习(PyTorch)
pytorch·笔记·深度学习·分布式计算·数据并行·参数服务器
DFminer3 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人
郄堃Deep Traffic3 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
海盗儿3 小时前
Attention Is All You Need (Transformer) 以及Transformer pytorch实现
pytorch·深度学习·transformer
GIS小天4 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票
阿部多瑞 ABU4 小时前
主流大语言模型安全性测试(三):阿拉伯语越狱提示词下的表现与分析
人工智能·安全·ai·语言模型·安全性测试
cnbestec4 小时前
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
人工智能·线性代数·触觉传感器
不爱写代码的玉子4 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#
sbc-study4 小时前
PCDF (Progressive Continuous Discrimination Filter)模块构建
人工智能·深度学习·计算机视觉