神经网络模型---ResNet

一、ResNet

1.导入包

python 复制代码
import tensorflow as tf
from tensorflow.keras import layers, models, datasets, optimizers

optimizers是用于更新模型参数以最小化损失函数的算法

2.加载数据集、归一化、转为独热编码的内容一致

3.增加颜色通道

python 复制代码
train_images = train_images[..., tf.newaxis].astype("float32")
test_images = test_images[..., tf.newaxis].astype("float32")

在train_images和test_images最后一个维度增加一个新的维度
这两行代码还将图像数据转换为浮点数类型

4.定义一个用于图像预处理的模型

4.1创造模型

python 复制代码
preprocessing = models.Sequential([

4.2添加一个卷积层,该层有3个1x1的卷积核,激活函数为relu,并且指定了输入形状为28x28像素的单通道图像

python 复制代码
layers.Conv2D(3, (1, 1), activation='relu', input_shape=(28, 28, 1)),

4.3 将图像尺寸增加到56x56

python 复制代码
    layers.UpSampling2D((2, 2)), 
])

5.应用预处理模型到训练和测试图像上

python 复制代码
train_images = preprocessing(train_images)
test_images = preprocessing(test_images)

6.加载ResNet50模型并冻结所有层

python 复制代码
base_model=tf.keras.applications.ResNet50(weights='imagenet',include_top=False,input_shape=(56, 56, 3))

ResNet50是一个预训练的卷积神经网络模型,
参数1:加载模型的权重
参数2:是否包括模型顶部的全连接层,设置False意味着不包括这些层,由此可以得到模型的特征提取部分
参数3:输入图像的尺寸
base_model.trainable = False
使ResNet50模型的所有层都不可训练

7.创建模型

python 复制代码
model = models.Sequential([

7.1放在模型的第一层添加到序列中,用于提取图像特征

python 复制代码
base_model,

7.2在Keras中添加的一个全局平均池化层

python 复制代码
layers.GlobalAveragePooling2D(),

7.3在Keras中添加的一个全连接层,使用softmax为激活函数

python 复制代码
    layers.Dense(10, activation='softmax')
])

8.编译模型

python 复制代码
model.compile(optimizer=optimizers.Adam(),
              loss='categorical_crossentropy',
              metrics=['accuracy'])

  • 和上一个博客的模型的内容一样,此处省略

9.训练模型

python 复制代码
model.fit(train_images, train_labels, epochs=10, batch_size=64, validation_data=(test_images, test_labels))

结果:

10.保存文件

python 复制代码
model.save('ResNet.h5')

结果:

相关推荐
YuhsiHu1 小时前
【论文简读】LongSplat
人工智能·深度学习·计算机视觉·3d
2zcode1 小时前
基于Matlab图像处理的液晶显示器表面缺陷检测与分类研究
人工智能·计算机视觉
白杨SEO营销1 小时前
白杨SEO:百度搜索开放平台发布AI计划是什么?MCP网站红利来了?顺带说说其它
人工智能·百度
有Li1 小时前
探索医学领域多模态人工智能的发展图景:技术挑战与临床应用的范围综述|文献速递-医学影像算法文献分享
论文阅读·人工智能·医学生
陈大鱼头2 小时前
PromptPilot — AI 自动化任务的下一个环节
人工智能
若天明2 小时前
深度学习-卷积神经网络CNN-卷积层
人工智能·深度学习·cnn
小关会打代码2 小时前
机器学习第三课之逻辑回归(二)LogisticRegression
人工智能·机器学习·逻辑回归
天天找自己3 小时前
机器学习基石:深入解析线性回归
人工智能·机器学习·线性回归
Godspeed Zhao3 小时前
自动驾驶中的传感器技术12——Camera(3)
人工智能·机器学习·自动驾驶