神经网络模型---ResNet

一、ResNet

1.导入包

python 复制代码
import tensorflow as tf
from tensorflow.keras import layers, models, datasets, optimizers

optimizers是用于更新模型参数以最小化损失函数的算法

2.加载数据集、归一化、转为独热编码的内容一致

3.增加颜色通道

python 复制代码
train_images = train_images[..., tf.newaxis].astype("float32")
test_images = test_images[..., tf.newaxis].astype("float32")

在train_images和test_images最后一个维度增加一个新的维度
这两行代码还将图像数据转换为浮点数类型

4.定义一个用于图像预处理的模型

4.1创造模型

python 复制代码
preprocessing = models.Sequential([

4.2添加一个卷积层,该层有3个1x1的卷积核,激活函数为relu,并且指定了输入形状为28x28像素的单通道图像

python 复制代码
layers.Conv2D(3, (1, 1), activation='relu', input_shape=(28, 28, 1)),

4.3 将图像尺寸增加到56x56

python 复制代码
    layers.UpSampling2D((2, 2)), 
])

5.应用预处理模型到训练和测试图像上

python 复制代码
train_images = preprocessing(train_images)
test_images = preprocessing(test_images)

6.加载ResNet50模型并冻结所有层

python 复制代码
base_model=tf.keras.applications.ResNet50(weights='imagenet',include_top=False,input_shape=(56, 56, 3))

ResNet50是一个预训练的卷积神经网络模型,
参数1:加载模型的权重
参数2:是否包括模型顶部的全连接层,设置False意味着不包括这些层,由此可以得到模型的特征提取部分
参数3:输入图像的尺寸
base_model.trainable = False
使ResNet50模型的所有层都不可训练

7.创建模型

python 复制代码
model = models.Sequential([

7.1放在模型的第一层添加到序列中,用于提取图像特征

python 复制代码
base_model,

7.2在Keras中添加的一个全局平均池化层

python 复制代码
layers.GlobalAveragePooling2D(),

7.3在Keras中添加的一个全连接层,使用softmax为激活函数

python 复制代码
    layers.Dense(10, activation='softmax')
])

8.编译模型

python 复制代码
model.compile(optimizer=optimizers.Adam(),
              loss='categorical_crossentropy',
              metrics=['accuracy'])

  • 和上一个博客的模型的内容一样,此处省略

9.训练模型

python 复制代码
model.fit(train_images, train_labels, epochs=10, batch_size=64, validation_data=(test_images, test_labels))

结果:

10.保存文件

python 复制代码
model.save('ResNet.h5')

结果:

相关推荐
大千AI助手7 分钟前
Prefix-Tuning:大语言模型的高效微调新范式
人工智能·神经网络·自然语言处理·llm·prefix-tuning·大千ai助手·前缀微调
雾江流11 分钟前
RikkaHub 1.6.11 | 开源的本地大型语言模型聚合应用,支持多种AI服务提供商
人工智能·语言模型·自然语言处理·软件工程
Mr_Dwj1 小时前
【Python】Python 基本概念
开发语言·人工智能·python·大模型·编程语言
私人珍藏库1 小时前
AI一键PPT 2.0.3 一键智能生成
人工智能·powerpoint
com_4sapi1 小时前
2025 权威认证头部矩阵系统全景对比发布 双榜单交叉验证
大数据·c语言·人工智能·算法·矩阵·机器人
2401_841495642 小时前
【自然语言处理】基于规则基句子边界检测算法
人工智能·python·自然语言处理·规则·文本·语言·句子边界检测算法
科技云报道2 小时前
AI+云计算互融共生,2025AI云产业发展大会即将举行
人工智能·云计算
飞哥数智坊2 小时前
TRAE SOLO 正式版实战:一个全栈打卡项目的真实体验
人工智能·trae·solo
哥布林学者2 小时前
吴恩达深度学习课程二: 改善深层神经网络 第三周:超参数调整,批量标准化和编程框架(一)超参数调整
深度学习·ai
qy-ll2 小时前
遥感论文学习
人工智能·深度学习·计算机视觉·gan·遥感·栅格化