在LangChain中,LLM(大型语言模型)和LLM Chain的区别是什么?

简单来说,LLM是一个大型语言模型,而LLM Chain是由多个LLM或其他组件组成的链式结构,用于在LangChain中构建复杂的自然语言处理流程。

Direct LLM Interface: 直接大型语言模型(LLM)接口:

python 复制代码
llm = OpenAI(temperature=0.9)    
    if prompt:            
        response = llm(prompt)
        st.write(response)

In this approach, you're directly using an instance of the OpenAI class. This class likely has an implementation of the model that can directly process a given prompt and return a response. The process is straightforward: you provide a prompt, the model generates a response.

在这种方法中,您直接使用了OpenAI类的一个实例。这个类可能包含了模型的实现,能够直接处理给定的提示并返回响应。整个过程很直接:您提供一个提示,模型生成一个响应。

LLMChain Interface: LLMChain接口

python 复制代码
   from langchain.prompts import PromptTemplate.  
   from langchain.chains import LLMChain

   template = "Write me something about {topic}".  
   topic_template = PromptTemplate(input_variables=['topic'], 
   template=template)

   topic_chain = LLMChain(llm=llm, prompt=topic_template)

   if prompt:    
     response = topic_chain.run(question).  
     st.write(response)

This approach involves a higher level of abstraction using the LLMChain and PromptTemplate classes. Here's a breakdown of what each part does:

这种方法涉及更高层次的抽象,使用了LLMChain和PromptTemplate类。以下是每个部分的功能分解:

PromptTemplate: Defines a structured prompt where you can specify variables that get filled in, ensuring that prompts adhere to a specific format.

PromptTemplate:定义了一个结构化的提示,其中可以指定要填充的变量,以确保提示遵循特定的格式。

LLMChain: Seems to be a chain or sequence of processes that likely utilize the underlying LLM. It takes a structured prompt and the underlying model to generate a response.

LLMChain:似乎是一个流程链或流程序列,可能利用了底层的大型语言模型(LLM)。它采用结构化提示和底层模型来生成响应。

When to use which? 它们的使用场景是什么?

Direct LLM Interface: This is suitable for more flexible or ad-hoc tasks where the prompt structure can vary widely and doesn't need to adhere to a predefined format.

直接大型语言模型(LLM)接口:这适用于更灵活或临时性的任务,其中提示结构可以有很大的变化,并且不需要遵循预定义的格式。

LLMChain Interface: This is apt for more structured tasks where consistency in the prompt format is essential. By using a chain, you can also potentially extend functionalities, like adding pre-processing or post-processing steps before and after querying the model.

LLMChain接口:这更适用于结构化的任务,其中提示格式的一致性至关重要。通过使用链式接口,您还可以潜在地扩展功能,例如在查询模型之前和之后添加预处理或后处理步骤。

相关推荐
孤单网愈云2 分钟前
11.22Pytorch_自动微分
人工智能·pytorch·python
weixin_4662027817 分钟前
第32周:猴痘病识别(Tensorflow实战第四周)
人工智能·python·tensorflow
程序猿老罗1 小时前
Flask 创建API接口服务
后端·python·flask
Adolf_19931 小时前
Flask 自定义路由转换器
后端·python·flask
南宫乘风1 小时前
基于 Flask 和 Socket.IO 的 WebSocket 实时数据更新实现
python·websocket·flask
孤华暗香1 小时前
Python设计模式详解之14 —— 命令模式
python·设计模式·命令模式
TANGLONG2221 小时前
【初阶数据结构和算法】leetcode刷题之设计循环队列
java·c语言·数据结构·c++·python·算法·leetcode
D0ublecl1ck2 小时前
初识 Django
数据库·python·django·sqlite
D0ublecl1ck2 小时前
【实用向】Django 框架入门
数据库·后端·python·django
fuvuof2 小时前
函数类型注释和Union联合类型注释
python