SSA-CNN多输入回归|樽海鞘算法-卷积神经网络|Matlab

目录

一、程序及算法内容介绍:

基本内容:

亮点与优势:

二、实际运行效果:

三、算法介绍:

四、完整程序下载:


一、程序及算法内容介绍:

基本内容:

  • 本代码基于Matlab 平台编译,将SSA( 樽海鞘算法)与CNN (卷积神经网络)结合,进行多输入数据回归预测

  • 输入训练的数据包含7个特征1个响应值 ,即通过7个输入值预测1个输出值**(多变量回归预测,个数可自行指定)**

  • 通过SSA算法优化CNN网络的学习率、卷积核个数参数,记录下最优的网络参数

  • 自动归一化,训练网络进行预测,实现更加精准的预测

  • 迭代计算过程中,自动显示优化进度条,实时查看程序运行进展情况

  • 自动输出多种多样的的误差评价指标,自动输出大量实验效果图片

亮点与优势:

  • 注释详细,几乎每一关键行都有注释说明,适合小白起步学习

  • 直接运行Main函数即可看到所有结果,使用便捷

  • 编程习惯良好,程序主体标准化,逻辑清晰,方便阅读代码

  • 所有数据均采用Excel格式输入,替换数据方便,适合懒人选手

  • 出图详细、丰富、美观,可直观查看运行效果

  • 附带详细的说明文档(下图),其内容包括:算法原理+使用方法说明

二、实际运行效果:

三、算法介绍:

卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,专门用于处理具有网格结构的数据,如图像、视频和声音等。CNN的设计灵感源自生物学中对动物视觉系统的研究,模拟了人类视觉系统的工作原理,能够有效地提取和学习数据中的特征。

CNN的核心组件包括卷积层、池化层和全连接层。在卷积层中,通过卷积操作,使用卷积核(滤波器)在输入数据上滑动计算,提取局部特征,生成特征图。卷积操作可以有效捕捉输入数据的空间结构信息,同时减少参数数量,提高模型的泛化能力。

池化层用于减小特征图的空间尺寸,降低计算复杂度,并增强模型对平移和尺度变化的鲁棒性。最常见的池化操作包括最大池化和平均池化,通过在特定区域内取最大值或平均值来减小特征图的尺寸。

全连接层通常位于CNN的尾部,用于将卷积层和池化层提取的特征映射转换为最终的输出,例如分类标签或回归值。全连接层中的神经元与前一层的所有神经元相连,通过学习权重参数来实现特征的组合和分类。

通过多个卷积层、池化层和全连接层的堆叠和交替使用,CNN能够逐渐提取输入数据的高级特征,实现对复杂数据的有效建模和分类。

四、完整程序下载:

相关推荐
谎言西西里4 小时前
LeetCode 热题100 --- 双指针专区
算法
tongxianchao6 小时前
UPDP: A Unified Progressive Depth Pruner for CNN and Vision Transformer
人工智能·cnn·transformer
leo__5207 小时前
基于两步成像算法的聚束模式SAR MATLAB实现
开发语言·算法·matlab
前端小白在前进7 小时前
力扣刷题:在排序数组中查找元素的第一个和最后一个位置
数据结构·算法·leetcode
某林2129 小时前
基于SLAM Toolbox的移动机器人激光建图算法原理与工程实现
stm32·嵌入式硬件·算法·slam
修炼地9 小时前
代码随想录算法训练营第四十三天 | 图论理论基础、深搜理论基础、卡码网98. 所有可达路径、797. 所有可能的路径、广搜理论基础
算法·深度优先·图论
iAkuya9 小时前
(leetcode)力扣100 23反转链表(迭代||递归)
算法·leetcode·链表
剪一朵云爱着9 小时前
PAT 1095 Cars on Campus
算法·pat考试
MicroTech202510 小时前
激光点云快速配准算法创新突破,MLGO微算法科技发布革命性点云配准算法技术
人工智能·科技·算法
Cathy Bryant10 小时前
傅里叶变换(一):简介
笔记·算法·数学建模·信息与通信·傅里叶分析