介绍spark中的模型选择与验证技术

模型选择与验证技术

在机器学习中,模型选择和验证技术是确保模型性能和避免过拟合的重要步骤。下面介绍一些常用的方法和工具。

1. 参数网格构建器 (ParamGridBuilder)

用途:用于构建参数网格,以便在网格搜索中选择最佳模型参数。

原理

ParamGridBuilder 允许用户定义一个或多个参数及其可能的取值范围,然后生成所有可能的参数组合。通过网格搜索,可以系统地评估每种参数组合,并选择性能最佳的组合。

应用

python 复制代码
from pyspark.ml.tuning import ParamGridBuilder

paramGrid = (ParamGridBuilder()
             .addGrid(model.param1, [0.1, 0.01])
             .addGrid(model.param2, [1, 5])
             .build())
2. 交叉验证 (CrossValidator)

用途:交叉验证是一种模型选择方法,通过将数据集分成若干个不重叠的随机分区(折叠),来评估模型性能。

原理

K 折交叉验证将数据集分成 K 个子集,每次使用 K-1 个子集进行训练,剩下的一个子集进行测试。重复 K 次,每次选择不同的子集作为测试集,最终计算平均性能度量。

应用

python 复制代码
from pyspark.ml.tuning import CrossValidator

crossval = CrossValidator(estimator=model,
                          estimatorParamMaps=paramGrid,
                          evaluator=evaluator,
                          numFolds=3)
3. 交叉验证模型 (CrossValidatorModel)

用途:包含在交叉验证中具有最高平均性能的模型,并使用此模型来转换输入数据。

原理

CrossValidatorModel 保存了在交叉验证过程中表现最好的模型及其对应的参数组合,便于后续直接使用该最佳模型进行预测或变换。

应用

python 复制代码
cvModel = crossval.fit(trainingData)
bestModel = cvModel.bestModel
4. 训练验证分割 (TrainValidationSplit)

用途:用于超参数调优的一种验证方法。

原理

TrainValidationSplit 将数据集随机划分为训练集和验证集。模型在训练集上进行训练,并在验证集上进行评估,以选择最优的超参数组合。

应用

python 复制代码
from pyspark.ml.tuning import TrainValidationSplit

tvs = TrainValidationSplit(estimator=model,
                           estimatorParamMaps=paramGrid,
                           evaluator=evaluator,
                           trainRatio=0.8)
5. 训练验证分割模型 (TrainValidationSplitModel)

用途:包含在训练验证分割中表现最好的模型,并使用此模型来转换输入数据。

原理

TrainValidationSplitModel 保存了在训练验证分割过程中表现最好的模型及其对应的参数组合,便于后续直接使用该最佳模型进行预测或变换。

应用

python 复制代码
tvsModel = tvs.fit(trainingData)
bestModel = tvsModel.bestModel

详细讲解

通过使用上述工具,学生可以学会如何系统地选择和评估模型参数,从而提高模型的泛化能力。参数网格构建器帮助定义所有可能的参数组合,而交叉验证和训练验证分割方法提供了评估模型性能的机制。通过这些方法,学生可以掌握从数据预处理、模型训练到参数调优的完整流程,提高模型的性能和可靠性。

相关推荐
草莓熊Lotso3 小时前
Linux 文件描述符与重定向实战:从原理到 minishell 实现
android·linux·运维·服务器·数据库·c++·人工智能
Coder_Boy_4 小时前
技术发展的核心规律是「加法打底,减法优化,重构平衡」
人工智能·spring boot·spring·重构
会飞的老朱6 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º8 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee10 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º11 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys11 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_567811 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子11 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能11 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算